Salles TS, da Encarnação Sá-Guimarães T, de Alvarenga ESL, Guimarães-Ribeiro V, de Meneses MDF, et al. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasit Vectors. 2018;11:264.
Article
Google Scholar
Patterson J, Sammon M, Garg M. Dengue, Zika and Chikungunya: emerging arboviruses in the new world. West J Emerg Med. 2016;17:671–9.
Article
Google Scholar
Liu QY. Dengue fever in China: new epidemical trend, challenges and strategies for prevention and control. Chin J Vector Biol Control. 2020;31:1–6.
Google Scholar
Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;387:1531–9.
Article
Google Scholar
Burt FJ, Rolph MS, Rulli NE, Mahalingam S, Heise MT. Chikungunya: a re-emerging virus. Lancet. 2012;379:662–71.
Article
Google Scholar
Bona AC, Chitolina RF, Fermino ML, de Castro PL, Weiss A, Lima JB, et al. Larval application of sodium channel homologous dsRNA restores pyrethroid insecticide susceptibility in a resistant adult mosquito population. Parasit Vectors. 2016;9:397.
Article
Google Scholar
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:e0005625.
Article
Google Scholar
Paris M, Tetreau G, Laurent F, Lelu M, Despres L, David JP. Persistence of Bacillus thuringiensis israelensis (Bti) in the environment induces resistance to multiple Bti toxins in mosquitoes. Pest Manag Sci. 2011;67:122–8.
Article
CAS
Google Scholar
Tetreau G, Alessi M, Veyrenc S, Périgon S, David JP, Reynaud S, et al. Fate of Bacillus thuringiensis subsp. israelensis in the field: evidence for spore recycling and differential persistence of toxins in leaf litter. Appl Environ Microbiol. 2012;78:8362–7.
Article
CAS
Google Scholar
Despres L, Stalinski R, Faucon F, Navratil V, Viari A, et al. Chemical and biological insecticides select distinct gene expression patterns in Aedes aegypti mosquito. Biol Lett. 2014;10:20140716.
Article
Google Scholar
Slatko BE, Luck AN, Dobson SL, Foster JM. Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol. 2014;195:88–95.
Article
CAS
Google Scholar
Hannon GJ. RNA interference. Nature. 2002;418:244–51.
Article
CAS
Google Scholar
Hoang T, Foquet B, Rana S, Little DW, Woller DA, Sword GA, et al. Development of RNAi Methods for the Mormon Cricket, Anabrus simplex (Orthoptera: Tettigoniidae). Insects. 2022;13:739.
Article
Google Scholar
Flynt AS. Insecticidal RNA interference, thinking beyond long dsRNA. Pest Manag Sci. 2021;77:2179–87.
Article
CAS
Google Scholar
Darrington M, Dalmay T, Morrison NI, Chapman T. Implementing the sterile insect technique with RNA interference—a review. Entomol Exp Appl. 2017;164:155–75.
Article
CAS
Google Scholar
Kunte N, McGraw E, Bell S, Held D, Avila LA. Prospects, challenges and current status of RNAi through insect feeding. Pest Manag Sci. 2020;76:26–41.
Article
CAS
Google Scholar
Lopez SBG, Guimarães-Ribeiro V, Rodriguez JVG, et al. RNAi-based bioinsecticide for Aedes mosquito control. Sci Rep. 2019;9:4038.
Article
Google Scholar
Wiltshire RM, Duman-Scheel M. Advances in oral RNAi for disease vector mosquito research and control. Curr Opin Insect Sci. 2020;40:18–23.
Article
Google Scholar
Munawar K, Alahmed AM, Khalil SMS. Delivery methods for RNAi in mosquito larvae. J Insect Sci. 2020;20:12.
Article
Google Scholar
Mysore K, Hapairai LK, Wei N, Realey JS, Scheel ND, Severson DW, et al. Preparation and use of a yeast shRNA delivery system for gene silencing in mosquito larvae. Methods Mol Biol. 2019;1858:213–31.
Article
CAS
Google Scholar
Airs PM, Bartholomay LC. RNA interference for mosquito and mosquito-borne disease control. Insects. 2017;8:4.
Article
Google Scholar
Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol. 2006;15:383–91.
Article
CAS
Google Scholar
Huvenne H, Smagghe G. Mechanism of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol. 2010;56:227–35.
Article
CAS
Google Scholar
Singh AD, Wong S, Ryan CP, Whyard S. Oral delivery of double-stranded RNA in larvae of the yellow fever mosquito, Aedes aegypti: implications for pest mosquito control. J Insect Sci. 2013;13:69.
Article
CAS
Google Scholar
Mysore K, Li P, Wang CW, Hapairai LK, Scheel ND, Realey S, et al. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin1a genes. Parasit Vectors. 2019;12:256.
Article
Google Scholar
Dhandapani RK, Gurusamy D, Howell JL, Palli SR. Development of CSTPP-dsRNA nanoparticles to enhance RNAi efciency in the yellow fever mosquito Aedes aegypti. Sci Rep. 2019;9:8775.
Article
Google Scholar
Mysore K, Hapairai LK, Sun L, Harper EI, Chen Y, Eggleson K, et al. Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality. Malar J. 2017;16:461.
Article
Google Scholar
Lopez SBG, Guimarães-Ribeiro V, Rodriguez VG, Dorand APS, Salles S, Sá-Guimarães TE, et al. RNAi-based bioinsecticide for Aedes mosquito control. Sci Rep. 2019;9:4038.
Article
Google Scholar
Gu J, Liu M, Deng Y, Peng H, Chen X. Development of an efficient recombinant mosquito densovirus-mediated RNA interference system and its preliminary application in mosquito control. PLoS ONE. 2011;6:e21329.
Article
CAS
Google Scholar
Kapitskaya MZ, Li C, Miura K, Segraves W, Raikhel AS. Expression of the early-late gene encoding the nuclear receptor HR3 suggests its involvement in regulating the vitellogenic response to ecdysone in the adult mosquito. Mol Cell Endocrinol. 2000;160:25–37.
Article
CAS
Google Scholar
Han Q, Beerntsen BT, Li J. The tryptophan oxidation pathway in mosquitoes with emphasis on xanthurenic acid biosynthesis. J Insect Physiol. 2007;53:254–63.
Article
CAS
Google Scholar
Fei XW, Zhang Y, Ding LL, Li YJ, Deng XD. Controlling the development of the dengue vector Aedes aegypti using HR3 RNAi transgenic Chlamydomonas. PLoS ONE. 2020;15:e0240223.
Article
CAS
Google Scholar
Fei XW, Zhang Y, Ding LL, Xiao S, Xie X, Li YJ, et al. Development of an RNAi-based microalgal larvicide for the control of Aedes aegypti. Parasit Vectors. 2021;14:387.
Article
CAS
Google Scholar
Rastogi Verma S. Genetically modified plants: public and scientific perceptions. ISRN Biotechnol. 2013;2013:820671.
Article
Google Scholar
Tsatsakis AM, Nawaz MA, Kouretas D, Balias G, Savolainen K, Tutelyan VA, et al. Environmental impacts of genetically modified plants: a review. Environ Res. 2017;156:818–33.
Article
CAS
Google Scholar
Nandy S, Srivastava V. Site-specific gene integration in rice genome mediated by the FLP-FRT recombination system. Plant Biotechnol J. 2011;9:713–21.
Article
CAS
Google Scholar
Nanto K, Ebinuma H. Marker-free site-specific integration plants. Transgenic Res. 2008;17:337–44.
Article
CAS
Google Scholar
Li Z, Xing A, Moon BP, Burgoyne SA, Guida AD, Liang H, et al. A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants. Plant Mol Biol. 2007;65:329–41.
Article
CAS
Google Scholar
Mészáros K, Éva C, Kiss T, Bányai J, Kiss E. Generating marker-free transgenic wheat using minimal gene cassette and cold-inducible cre/lox system. Plant Mol Biol Rep. 2015;33:1221–31.
Article
Google Scholar
Mlynarova L, Nap JP. A self-excising Cre recombinase allows efficient recombination of multiple ectopic heterospecific lox sites in transgenic tobacco. Transgenic Res. 2003;12:45–57.
Article
CAS
Google Scholar
Moravcikova J, Vaculkova E, Bauer M, Libantova J. Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theor Appl Genet. 2008;117:1325–34.
Article
CAS
Google Scholar
Khan RS, Nakamura I, Mii M. Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep. 2011;30:1041–53.
Article
CAS
Google Scholar
Li T, Huang S, Zhao XF, Wright DA, Carpenter S, Spalding MH, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 2011;39:6315–25.
Article
CAS
Google Scholar
Wood AJ, Lo T, Zeitler B, Pickle CS, Ralston EJ, Lee AH, et al. Targeted genome editing across species using ZFNs and TALENs. Science. 2011;333:307.
Article
CAS
Google Scholar
Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2010;29:143–8.
Article
Google Scholar
Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. 2011;29:697–8.
Article
CAS
Google Scholar
Woo JW, Kim J, Kwon SI, et al. DNA-free genome editing in plants with reassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol. 2015;33:1162–4.
Article
CAS
Google Scholar
Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun. 2016;7:13274.
Article
CAS
Google Scholar
Zhang Y, Liang Z, Zong Y, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun. 2016;7:12617.
Article
CAS
Google Scholar
Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res. 2002;11:381–96.
Article
CAS
Google Scholar
McCormac AC, Fowler MR, Chen DF, Elliott MC. Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res. 2001;10:143–55.
Article
CAS
Google Scholar
Tuteja N, Verma S, Sahoo RK, Raveendar S, Reddy IN. Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci. 2012;37:167–97.
Article
CAS
Google Scholar
Xing A, Zhang Z, Sato S, Staswick P, Clement T. The use of two T-DNA binary system to derive marker-free transgenic soybeans. In Vitro Cell Dev Biol Plant. 2000;36:456–63.
Article
CAS
Google Scholar
Rao MVR, Parameswari C, Sripriya R, Veluthambi K. Transgene stacking and marker elimination in transgenic rice by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. Plant Cell Rep. 2011;30:1241–52.
Article
Google Scholar
Wang GP, Yu XD, Sun YW, Jones HD, Xia LQ. Generation of marker-and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation. Front Plant Sci. 2016;7:1324.
Google Scholar
Wang K, Liu H, Du L, Ye X. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J. 2017;15:614–23.
Article
CAS
Google Scholar
Lu U, Wu XR, Yin XY, Morrand J, Chen XL, Folk WR, et al. Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tiss Organ Cult. 2009;99:97–108.
Article
CAS
Google Scholar
Davies JP, Weeks DP, Grossman AR. Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res. 1992;20:2959–65.
Article
CAS
Google Scholar
Debuchy R, Purton S, Rochaix JD. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 1989;8:2803.
Article
CAS
Google Scholar
Fei XW, Deng XD. A novel Fe deficiency-responsive element (FeRE) regulates the expression of atx1 in Chlamydomonas reinharditii. Plant Cell Physiol. 2007;48:1496–503.
Article
CAS
Google Scholar
Fei XW, Eriksson M, Yang J, Deng XD. An Fe deficiency responsive element with a core sequence of TGGCA regulates the expression of FEA1 in Chlamydomonas reinharditii. J Biochem. 2009;146:157–66.
Article
CAS
Google Scholar
Harris EH. The Chlamydomonas source book: a comprehensive guide to biology and laboratory use. San Diego: Academic Press; 1989.
Google Scholar
Deng XD, Cai JJ, Fei XW. Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii. BMC Biochem. 2013;14:38.
Article
Google Scholar
Heitzer M, Zschoernig B. Construction of modular tandem expression vectors for the green alga Chlamydomonas reinhardtii using the Cre/lox-system. Biotechniques. 2007;43:324.
Article
CAS
Google Scholar
Kindle KL. High frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA. 1990;87:1228–32.
Article
CAS
Google Scholar
Dzaki N, Ramli KN, Azlan A, Ishak IH, Azzam G. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci Rep. 2017;7:43618.
Article
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar
Mysore K, Li P, Wang CW, Hapairai LK, Scheel ND, Realey JS, et al. Characterization of a yeast interfering RNA larvicide with a target site conserved in the synaptotagmin gene of multiple disease vector mosquitoes. PLoS Negl Trop Dis. 2019;13:e0007422.
Article
CAS
Google Scholar
Winnepenninckx B, Backeljau T, De Wachter R. Extraction of high molecular weight DNA from mollusks. Trends Genet. 1993;9:407.
Article
CAS
Google Scholar
Cheung MK, Au CH, Chu KH, Kwan HS, Wong CK. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. ISME J. 2010;4:1053–9.
Article
Google Scholar
Zimmermann J, Jahn R, Gemeinholzer B. Barcoding diatoms: evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org Divers Evol. 2011;11:173–92.
Article
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Article
CAS
Google Scholar
Flynn JM, Brown EA, Chain FJ, MacIsaac HJ, Cristescu ME. Toward accurate molecular identification of species in complex environmental samples: testing the performance of sequence filtering and clustering methods. Ecol Evol. 2015;5:2252–66.
Article
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.
Article
Google Scholar
Fan J, Lin H, Wang C, Bai L, Yang S, Chu C, et al. Identifying the high-risk areas and associated meteorological factors of dengue transmission in Guangdong Province, China from 2005 to 2011. Epidemiol Infect. 2014;142:634–43.
Article
CAS
Google Scholar
Shen JC, Luo L, Li L, Jing QL, Ou CQ, Yang ZC, et al. The impacts of mosquito density and meteorological factors on dengue fever epidemics in Guangzhou, China, 2006–2014: a time-series analysis. Biomed Environ Sci. 2015;28:321–9.
Google Scholar
Petersen LR, Jamieson DJ, Powers AM, Honein MA. Zika virus. N Engl J Med. 2016;374:1552–63.
Article
CAS
Google Scholar
Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth d effects-reviewing the evidence for causality. N Engl J Med. 2016;374:1981–7.
Article
CAS
Google Scholar
Qin XN, Ren XY, Xie XY, Chen YH, Xia QF, Kang X. Isolation and identification of gut microbiota of Aedes albopictus larvae from Haikou and surrounding areas, China. Chin J Vector Biol Control. 2022;33:201–6.
Google Scholar
Liu QY. Sustainable vector management strategy and practice: achievements in vector-borne diseases control in new China in the past seventy years. Chin J Vector Biol Control. 2019;30:361–6.
Google Scholar