Tandina F, Doumbo O, Yaro AS, Traoré SF, Parola P, Robert V. Mosquitoes (Diptera: Culicidae) and mosquito-borne diseases in Mali, West Africa. Parasit Vectors. 2018;11:467.
Article
Google Scholar
Matthews BJ. Aedes aegypti. Trends Genet. 2019;35:470–1.
Article
CAS
Google Scholar
Zara AL, Santos SM, Fernandes-Oliveira ES, Carvalho RG, Coelho GE. Estratégias de controle do Aedes aegypti: uma revisão. Epidemiol Serv Saude. 2016;25:391–404.
Google Scholar
Francis S, Campbell T, McKenzie S, Wright D, Crawford J, Hamilton T, et al. Screening of insecticide resistance in Aedes aegypti populations collected from parishes in Eastern Jamaica. PLoS Negl Trop Dis. 2020;14:e0008490.
Article
Google Scholar
Rodríguez MM, Ruiz A, Piedra L, Gutierrez G, Rey J, Cruz M, et al. Multiple insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Boyeros municipality, Cuba and associated mechanisms. Acta Trop. 2020;212:105680.
Article
Google Scholar
Yang F, Schildhauer S, Billeter SA, Hardstone YM, Payne R, Pakingan MJ, et al. Insecticide resistance status of Aedes aegypti (Diptera: Culicidae) in California by biochemical assays. J Med Entomol. 2020;57:1176–83.
Article
CAS
Google Scholar
Maïga H, Gilles JRL, Susan Lees R, Yamada H, Bouyer J. Demonstration of resistance to satyrization behavior in Aedes aegypti from La Réunion island. Parasite. 2020;27:1–10.
Article
Google Scholar
Morales D, Ponce P, Cevallos V, Espinosa P, Vaca D, Quezada W. Resistance status of Aedes aegypti to deltamethrin, malathion, and temephos in Ecuador. J Am Mosq Control Assoc. 2019;35:113–22.
Article
Google Scholar
Kandel Y, Vulcan J, Rodriguez SD, Moore E, Chung H-N, Mitra S, et al. Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A. PLoS ONE. 2019;14:e0212693.
Article
CAS
Google Scholar
Bitencourt ROB, Mallet JRS, Mesquita E, Gôlo PS, Fiorotti J, Bittencourt VREP, et al. Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Trop. 2021;213:1–11.
Google Scholar
Bitencourt ROB, Farias FS, Freitas MC, Balduino CJR, Mesquita ES, Corval ARC, et al. In vitro control of Aedes aegypti larvae using Beauveria bassiana. Int J Biol Sci. 2018;12:400–4.
Google Scholar
Rodrigues J, Catão AML, Dos Santos AS, Paixão FRS, Santos TR, Martinez JM, et al. Relative humidity impacts development and activity against Aedes aegypti adults by granular formulations of Metarhizium humberi microsclerotia. Appl Microbiol Biotechnol. 2021;105:2725–36.
Article
CAS
Google Scholar
Alkhaibari AM, Lord AM, Maffeis T, Bull JC, Olivares FL, Samuels RI, et al. Highly specific host-pathogen interactions influence Metarhizium brunneum blastospores virulence against Culex quinquefasciatus larvae. Virulence. 2018;9:1449–67.
Article
CAS
Google Scholar
Alkhaibari AM, Carolino AT, Bull JC, Samuels RI, Butt TM. Differential pathogenicity of Metarhizium blastospores and conidia against larvae of three mosquito species. J Med Entomol. 2017;54:696–704.
Article
CAS
Google Scholar
Alkhaibari AM, Carolino AT, Yavasoglu SI, Maffeis T, James CB, et al. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae: attack on several fronts accelerates mortality. PLoS Pathog. 2016;12:1–19.
Article
Google Scholar
Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. Entomopathogenic fungi: new insights into host-pathogen interactions, advances in genetics. Genet Molec Biol Entom Fungi. 2016;94:307–64.
CAS
Google Scholar
Schrank A, Vainstein MH. Metarhizium anisopliae enzymes and toxins. Toxicon. 2010;56:1267–74.
Article
CAS
Google Scholar
De Paula AR, Silva LEI, Ribeiro A, Da Silva GA, Silva CP, Butt TM, et al. Metarhizium anisopliae blastospores are highly virulent to adult Aedes aegypti, an important arbovirus vector. Parasit Vectors. 2021;14:555.
Article
Google Scholar
Holder DJ, Kirkland BH, Lewis MW, Keyhani NO. Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology. 2007;153:3448–57.
Article
CAS
Google Scholar
Wang YH, Chang MM, Wang XL, Zheng AH, Zou Z. The immune strategies of mosquito Aedes aegypti against microbial infection. Dev Comp Immunol. 2018;83:12–21.
Article
CAS
Google Scholar
Strand MR. The insect cellular immune response. Insect Sci. 2008;15:1–14.
Article
CAS
Google Scholar
Lowenberger C. Innate immune response of Aedes aegypti. Insect Biochem Mol Biol. 2001;31:219–29.
Article
CAS
Google Scholar
Balabanidou V, Grigoraki L, Vontas J. Insect cuticle: a critical determinant of insecticide resistance. Curr Opin Insect Sci. 2018;27:68–74.
Article
Google Scholar
Wang LY, Jafarpour M, Lin CP, Appel E, Gorb SN, Rajabi H. Endocuticle sclerotisation increases the mechanical stability of cuticle. Soft Matter. 2019;15:8272–8.
Article
CAS
Google Scholar
Dinglasan RR, Devenport M, Florens L, Johnson JR, McHugh CA, Donnelly- Doman M, et al. The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem Mol Biol. 2009;39:125–34.
Article
CAS
Google Scholar
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. Dev Comp Immunol. 2016;64:53–64.
Article
CAS
Google Scholar
Hillyer JF. Insect immunology and hematopoiesis. Dev Comp Immunol. 2016;58:102–18.
Article
CAS
Google Scholar
Hall DW. Mosquito hemocytes: a review. Dev Comp Immunol. 1983;7:1–12.
Article
CAS
Google Scholar
Araújo HC, Cavalcanti MG, Santos SS, Alves LC, Brayner FA. Hemocytes ultrastructure of Aedes aegypti (Diptera: Culicidae). Micron. 2008;39:184–9.
Article
Google Scholar
Hillyer JF, Christensen BM. Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochem Cell Biol. 2002;117:431–40.
Article
CAS
Google Scholar
Myllymäki H, Valanne S, Rämet M. The Drosophila imd signaling pathway. J Immunol. 2014;192:3455–62.
Article
Google Scholar
Myllymäki H, Rämet M. JAK/STAT pathway in Drosophila immunity. Scand J Immunol. 2014;79:377–85.
Article
Google Scholar
Valanne S, Wang JH, Rämet M. The Drosophila Toll signaling pathway. J Immunol. 2011;186:649–56.
Article
CAS
Google Scholar
Cabral S, de Paula A, Samuels R, da Fonseca R, Gomes S, Silva JR, et al. Aedes aegypti (Diptera: Culicidae) immune responses with different feeding regimes following infection by the entomopathogenic fungus Metarhizium anisopliae. Insects. 2020;11:95.
Article
Google Scholar
Ramirez JL, Muturi EJ, Barletta ABF, Rooney AP. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response. Dev Comp Immunol. 2019;95:1–9.
Article
CAS
Google Scholar
Ramirez JL, Dunlap CA, Muturi EJ, Barletta ABF, Rooney AP. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Negl Trop Dis. 2018;2:e0006433.
Article
Google Scholar
Dong Y, Morton JC Jr, Ramirez JL, Souza-Neto JA, Dimopoulos G. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti. Insect Biochem Mol Biol. 2012;42:126–32.
Article
CAS
Google Scholar
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. Insect Biochem Mol Biol. 2019;111:103182.
Article
CAS
Google Scholar
Farnesi LC, Vargas HCM, Valle D, Rezende GL. Darker eggs of mosquitoes resist more to dry conditions: melanin enhances serosal cuticle contribution in egg resistance to desiccation in Aedes, Anopheles and Culex vectors. PLoS Negl Trop Dis. 2017;11:e0006063.
Article
Google Scholar
ALVES SB. Fungos entomopatogênicos. In: Alves SB. (Ed.), Controle microbiano de insetos. Fundação de Estudos Agrário Luiz de Queirós (FEALQ). Piracicaba, BR; 1998. p.289–382.
Corrêa-da-Silva MS, Fampa P, Lessa LP, Silva ER, dos Santos Mallet JR, Saraiva EM, et al. Colonization of Aedes aegypti midgut by the endosymbiont-bearing trypanosomatid Blastocrithidia culicis. Parasitol Res. 2006;99:384–91.
Article
Google Scholar
Nunes FC. Estudo da atividade larvicida de Agave sisanala contra Aedes aegypti. João Pessoa: Universidade Federal da Paraíba; 2013. p. 114.
Google Scholar
Urbanová V, Hajdušek O, Hönig MH, Šíma R, Kopáček P. Tick thioester-containing proteins and phagocytosis do not affect transmission of Borrelia afzelii from the competent vector Ixodes ricinus. Front Cell Infect Microbiol. 2017;7:1–11.
Article
Google Scholar
Fiorotti J, Menna-Barreto RFS, Gôlo PS, Coutinho-Rodrigues CJB, Bitencourt ROB, Spadacci-Morena DD, et al. Ultrastructural and cytotoxic effects of Metarhizium robertsii infection on Rhipicephalus microplus hemocytes. Front Physiol. 2019;10:654.
Article
Google Scholar
Alves FM. Perfil proteico e de hemócitos da hemolinfa de larvas de Musca domestica infectadas com conídios ou blastoporos de Metarhizium robertsii. Goiás: Universidade Federal de Goiás; 2018. p. 54.
Google Scholar
Hayat MA. Principles and techniques of electron microscopy. Biological applications. New York: Van Nostrand Reinhold Company.2000 4th edition.
Cornet S, Gandon S, Rivero A. Patterns of phenoloxidase activity in insecticide resistant and susceptible mosquitoes differ between laboratory-selected and wild-caught individuals. Parasit Vectors. 2013;6:315. https://doi.org/10.1186/1756-3305-6-315.
Article
CAS
Google Scholar
Melo CB, Garcia ES, Ratcliffe NA, Azambuja P. Trypanosoma cruzi and Trypanosoma rangeli: interplay with hemolymph components of Rhodnius prolixus. J Invertebr Pathol. 1995;3:261–8.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.
Article
CAS
Google Scholar
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.
Article
CAS
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.
Article
CAS
Google Scholar
Rhodes VL, Thomas MB, Michel K. The interplay between dose and immune system activation determines fungal infection outcome in the African malaria mosquito, Anopheles gambiae. Dev Comp Immunol. 2018;85:125–33.
Article
CAS
Google Scholar
Yassine H, Kamareddine L, Osta MA. The mosquito melanization response is implicated in defense against the entomopathogenic fungus Beauveria bassiana. PLoS Pathog. 2012;8:e1003029.
Article
CAS
Google Scholar
Farnesi LC, Brito JM, Linss JG, Pelajo-Machado M, Valle D, Rezende GL. Physiological and morphological aspects of Aedes aegypti developing larvae: effects of the chitin synthesis inhibitor novaluron. PLoS ONE. 2012;7:e30363.
Article
CAS
Google Scholar
Butt TM, Greenfield BP, Greig C, Maffeis TG, Taylor JW, Piasecka J, et al. Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death. PLoS ONE. 2013;8:e81686.
Article
Google Scholar
Freitas MC, Coutinho-Rodrigues CJB, Perinotto WMS, Nogueira MRS, Chagas TT, Marciano AF, et al. Quantificação de hemócitos de fêmeas ingurgitadas de Rhipicephalus microplus infectadas por Beauveria bassiana sl. Rev bras med vet. 2015;37:63–70.
Google Scholar
Wang L, Wang J, Zhang X, Yin Y, Li R, Lin Y, et al. Pathogenicity of Metarhizium rileyi against Spodoptera litura larvae: appressorium differentiation, proliferation in hemolymph, immune interaction, and reemergence of mycelium. Fungal Genet Biol. 2021;150:103508.
Article
CAS
Google Scholar
Guimarães J, Marques EJ, Wanderley-Teixeira V, De Albuquerque AC, Dos Passos EM, Silva CC, et al. Sublethal effect of concentrations of Metarhizium anisopliae (Metsch.) Sorok on the larval stage and immunologic characteristics of Diatraea flavipennella (BOX) (Lepidoptera: Crambidae). An da Acad Bras de Ciênc. 2014;86:1973–84.
Article
Google Scholar
Mishra S, Kumar P, Malik A. The effect of Beauveria bassiana infection on cell mediated and humoral immune response in house fly, Musca domestica L. Environ Sci Pollut Res Int. 2015;22:15171–8.
Article
Google Scholar
Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes. Science. 2010;329:1353–5.
Article
CAS
Google Scholar
Hillyer JF, Strand MR. Mosquito hemocyte-mediated immune responses. Curr Opin Insect Sci. 2014;3:14–21.
Article
Google Scholar
Bitencourt ROB, Salcedo-Porras N, Umaña-Diaz C, da Costa AI, Lowenberger C. Antifungal immune responses in mosquitoes (Diptera: Culicidae): a review. J Invertebr Pathol. 2014;178:107505.
Article
Google Scholar
Pedrini N. The entomopathogenic fungus Beauveria bassiana shows its toxic side within insects: expression of genes encoding secondary metabolites during pathogenesis. J Fungi (Basel). 2022;7:488.
Article
Google Scholar
Fan J, Chen X, Hu Q. Effects of destruxin A on hemocytes morphology of Bombyx mori. J Integr Agric. 2013;12:1042–8.
Article
Google Scholar
González-Santoyo I, Córdoba-Aguilar A. Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl. 2012;142:1–16.
Article
Google Scholar
Christensen BM, Li J, Chen CC, Nappi AJ. Melanization immune responses in mosquito vectors. Trends Parasitol. 2005;21:192–9.
Article
CAS
Google Scholar
Blandin S, Shiao SH, Moita LF, Janse CJ, Waters AP, Kafatos FC, et al. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell. 2004;116:661–70.
Article
CAS
Google Scholar
Shao Q, Yang B, Xu Q, Li X, Lu Z, Wang C, et al. Hindgut innate immunity and regulation of fecal microbiota through melanization in insects. J Biol Chem. 2012;287:14270–9.
Article
CAS
Google Scholar
Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013;4:597–603.
Article
Google Scholar
Ono M, Arimatsu C, Yoshiga T. Ex vivo observation of insect hemocyte behavior against beads and nematodes in the presence of insect plasma. Appl Entomol Zool. 2020;55:65–70.
Article
CAS
Google Scholar
Ling E, Yu XQ. Cellular encapsulation and melanization are enhanced by immulectins, pattern recognition receptors from the tobacco hornworm Manduca sexta. Dev Comp Immunol. 2006;30:289–99.
Article
CAS
Google Scholar
Hillyer JF, Schmidt SL, Christensen BM. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti. J Parasitol. 2003;89:62–9.
Article
Google Scholar
Hillyer JF, Schmidt SL, Fuchs JF, Boyle JP, Christensen BM. Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell Microbiol. 2005;7:39–51.
Article
CAS
Google Scholar
Bartholomay LC, Fuchs JF, Cheng LL, Beck ET, Vizioli J, Lowenberger C, et al. Reassessing the role of defensin in the innate immune response of the mosquito. Aedes aegypti Insect Mol Biol. 2004;13:125–32.
Article
CAS
Google Scholar
Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci. 1997;94:14614–9.
Article
CAS
Google Scholar
Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, et al. Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta. 2012;1824:68–88.
Article
CAS
Google Scholar
Silva CP, Lemos FJA, Silva JR. Capítulo 5. Digestão de Insetos. Tópicos Avançados em Entomologia Molecular Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular INCT–EM–2012.
Sun R, Zhang Y, Lv Q, Liu B, Jin M, Zhang W, et al. Toll-like receptor 3 (TLR3) induces apoptosis via death receptors and mitochondria by up-regulating the trans- activating p63 isoform α (TAP63α). J Biol Chem. 2011;286:15918–28.
Article
CAS
Google Scholar
Caicedo PA, Serrato IM, Sim S, Dimopoulos G, Coatsworth H, Lowenberger C, et al. Immune response-related genes associated to blocking midgut dengue virus infection in Aedes aegypti strains that differ in susceptibility. Insect Sci. 2019;26:635–48.
Article
CAS
Google Scholar
Lowenberger C, Charlet M, Vizioli J, Kamal S, Richman A, Christensen BM, et al. Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J Biol Chem. 1999;274:20092–7.
Article
CAS
Google Scholar
Pal S, St Leger RJ, Wu LP. Fungal peptide Destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J Biol Chem. 2007;282:8969–77.
Article
CAS
Google Scholar
Wei G, Lai LY, Wang G, Chen H, Li LF, Wang S. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci. 2017;114:5994–9.
Article
CAS
Google Scholar