Lindsay DS, Dubey JP. Neosporosis, toxoplasmosis, and sarcocystosis in ruminants: an update. Vet Clin North Am Food Anim Pract. 2020;36:205–22.
Article
Google Scholar
Almería S. Neospora caninum and wildlife. ISRN Parasitol. 2013;2013:947347.
Article
Google Scholar
Ying Z, Zhu ZF, Yang X, Liu J, Liu Q. Prevalence and associated risk factors of Neospora caninum infection among cattle in mainland China: a systematic review and meta-analysis. Prev Vet Med. 2022;201:105593.
Article
Google Scholar
Dubey JP. Review of Neospora caninum and neosporosis in animals. Korean J Parasitol. 2003;41:1–16.
Article
CAS
Google Scholar
Dubey JP. Recent advances in Neospora and neosporosis. Vet Parasitol. 1999;84:349–67.
Article
CAS
Google Scholar
Dubey JP, Schares G, Ortega-Mora LM. Epidemiology and control of neosporosis and Neospora caninum. Clin Microbiol Rev. 2007;20:323–67.
Article
CAS
Google Scholar
Rodrigues AA, Reis SS, Sousa ML, Moraes EDS, Garcia JL, Nascimento TVC, et al. A systematic literature review and meta-analysis of risk factors for Neospora caninum seroprevalence in goats. Prev Vet Med. 2020;185:105176.
Article
Google Scholar
Oshiro LM, Motta-Castro AR, Freitas SZ, Cunha RC, Dittrich RL, Meirelles AC, et al. Neospora caninum and Toxoplasma gondii serodiagnosis in human immunodeficiency virus carriers. Rev Soc Bras Med Trop. 2015;48:568–72.
Article
Google Scholar
Ojo KK, Reid MC, Kallur Siddaramaiah L, Müller J, Winzer P, Zhang Z, et al. Neospora caninum calcium-dependent protein kinase 1 is an effective drug target for neosporosis therapy. PLoS One. 2014;9:e92929.
Article
Google Scholar
Nishikawa Y. Towards a preventive strategy for neosporosis: challenges and future perspectives for vaccine development against infection with Neospora caninum. J Vet Med Sci. 2017;79:1374–80.
Article
CAS
Google Scholar
Monney T, Hemphill A. Vaccines against neosporosis: what can we learn from the past studies? Exp Parasitol. 2014;140:52–70.
Article
CAS
Google Scholar
Marugan-Hernandez V. Neospora caninum and bovine neosporosis: current vaccine research. J Comp Pathol. 2017;157:193–200.
Article
CAS
Google Scholar
Dubey JP, Schares G. Neosporosis in animals–the last five years. Vet Parasitol. 2011;180:90–108.
Article
CAS
Google Scholar
Hall CA, Reichel MP, Ellis JT. Neospora abortions in dairy cattle: diagnosis, mode of transmission and control. Vet Parasitol. 2005;128:231–41.
Article
CAS
Google Scholar
Reichel MP, Alejandra Ayanegui-Alcérreca M, Gondim LF, Ellis JT. What is the global economic impact of Neospora caninum in cattle—the billion dollar question. Int J Parasitol. 2013;43:133–42.
Article
Google Scholar
Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141:1202–7.
Article
CAS
Google Scholar
Lai EC. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 2002;30:363–4.
Article
CAS
Google Scholar
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.
Article
CAS
Google Scholar
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.
Article
CAS
Google Scholar
Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol. 2010;223:49–56.
CAS
Google Scholar
Subramanian S, Steer CJ. MicroRNAs as gatekeepers of apoptosis. J Cell Physiol. 2010;223:289–98.
CAS
Google Scholar
Babashah S, Soleimani M. The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer. 2011;47:1127–37.
Article
CAS
Google Scholar
Fu LL, Wen X, Bao JK, Liu B. MicroRNA-modulated autophagic signaling networks in cancer. Int J Biochem Cell Biol. 2012;44:733–6.
Article
CAS
Google Scholar
Zha X, Xi X, Fan X, Ma M, Zhang Y, Yang Y. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging (Albany NY). 2020;12:8137–50.
Article
CAS
Google Scholar
Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199–227.
Article
CAS
Google Scholar
Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol. 2014;51:759–74.
Article
CAS
Google Scholar
Li S, Yang J, Wang L, Du F, Zhao J, Fang R. Expression profile of microRNAs in porcine alveolar macrophages after Toxoplasma gondii infection. Parasit Vectors. 2019;12:65.
Article
Google Scholar
Hou Z, Liu D, Su S, Wang L, Zhao Z, Ma Y, et al. Comparison of splenocyte microRNA expression profiles of pigs during acute and chronic toxoplasmosis. BMC Genomics. 2019;20:97.
Article
Google Scholar
Cong W, Zhang XX, He JJ, Li FC, Elsheikha HM, Zhu XQ. Global miRNA expression profiling of domestic cat livers following acute Toxoplasma gondii infection. Oncotarget. 2017;8:25599–611.
Article
Google Scholar
He JJ, Ma J, Wang JL, Xu MJ, Zhu XQ. Analysis of miRNA expression profiling in mouse spleen affected by acute Toxoplasma gondii infection. Infect Genet Evol. 2016;37:137–42.
Article
CAS
Google Scholar
Dubey JP, Barr BC, Barta JR, Bjerkås I, Björkman C, Blagburn BL, et al. Redescription of Neospora caninum and its differentiation from related coccidia. Int J Parasitol. 2002;32:929–46.
Article
CAS
Google Scholar
Howe DK, Sibley LD. Comparison of the major antigens of Neospora caninum and Toxoplasma gondii. Int J Parasitol. 1999;29:1489–96.
Article
CAS
Google Scholar
Al-Bajalan MMM, Xia D, Armstrong S, Randle N, Wastling JM. Toxoplasma gondii and Neospora caninum induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites. Parasitol Res. 2017;116:2707–19.
Article
Google Scholar
Zhao SS, Tao DL, Chen JM, Wu JP, Yang X, Song JK, et al. RNA sequencing reveals dynamic expression of lncRNAs and mRNAs in caprine endometrial epithelial cells induced by Neospora caninum infection. Parasit Vectors. 2022;15:297.
Article
CAS
Google Scholar
Zhao SS, Tao DL, Chen JM, Chen X, Geng XL, Wang JW, et al. Neospora caninum infection activated autophagy of caprine endometrial epithelial cells via mTOR signaling. Vet Parasitol. 2022;304:109685.
Article
CAS
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 2011;17:10–2.
Article
Google Scholar
Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 2012;7:e30619.
Article
CAS
Google Scholar
Langmead B. Aligning short sequencing reads with bowtie. Curr Protoc Bioinform. 2010. https://doi.org/10.1002/0471250953.bi1107s32.
Article
Google Scholar
Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31:439–41.
Article
CAS
Google Scholar
Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinform. 2004;5:4–10.
Article
Google Scholar
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–8.
Article
CAS
Google Scholar
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52.
Article
Google Scholar
Sun J, Wang S, Li C, Ren Y, Wang J. Novel expression profiles of microRNAs suggest that specific miRNAs regulate gene expression for the sexual maturation of female Schistosoma japonicum after pairing. Parasit Vectors. 2014;7:177.
Article
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome Biol. 2003;5:R1.
Article
Google Scholar
Liu Y, Zhou Z, He X, Tao L, Jiang Y, Lan R, et al. Integrated analyses of miRNA-mRNA expression profiles of ovaries reveal the crucial interaction networks that regulate the prolificacy of goats in the follicular phase. BMC Genomics. 2021;22:812.
Article
CAS
Google Scholar
Zhao X, Ji Z, Xuan R, Wang A, Li Q, Zhao Y, et al. Characterization of the microRNA expression profiles in the goat kid liver. Front Genet. 2022;12:794157.
Article
Google Scholar
Ye J, Yao Z, Si W, Gao X, Yang C, Liu Y, et al. Identification and characterization of microRNAs in the pituitary of pubescent goats. Reprod Biol Endocrinol. 2018;16:51.
Article
Google Scholar
Zhang W, Jiao Z, Huang H, Wu Y, Wu H, Liu Z, et al. Effects of Pasteurella multocida on histopathology, miRNA and mRNA expression dynamics in lung of goats. Animals (Basel). 2022;12:1529.
Article
Google Scholar
Liao R, Lv Y, Dai J, Zhang D, Zhu L, Lin Y. chi-miR-99b-3p regulates the proliferation of goat skeletal muscle satellite cells in vitro by targeting caspase-3 and NCOR1. Animals (Basel). 2022;12:2368.
Article
Google Scholar
Pang F, Wang X, Chen Z, Zhang Z, Zhang M, Wang C, et al. Integrated analysis of differentially expressed miRNAs and mRNAs in goat skin fibroblast cells in response to orf virus infection reveals that cfa-let-7a regulates thrombospondin 1 expression. Viruses. 2020;12:118.
Article
CAS
Google Scholar
An SY, Zhang GM, Liu ZF, Zhou C, Yang PC, Wang F. MiR-1197-3p regulates testosterone secretion in goat Leydig cells via targeting PPARGC1A. Gene. 2019;710:131–9.
Article
CAS
Google Scholar
Urbańska DM, Jarczak J, Czopowicz M, Kaba J, Horbańczuk K, Bagnicka E. miRNA expression patterns in blood leukocytes and milk somatic cells of goats infected with small ruminant lentivirus (SRLV). Sci Rep. 2022;12:13239.
Article
Google Scholar
Du Y, Wang Y, Li Y, Emu Q, Zhu J, Lin Y. miR-214-5p regulating differentiation of intramuscular preadipocytes in goats via targeting KLF12. Front Genet. 2021;12:748629.
Article
CAS
Google Scholar
Zhang L, Liu XR, Liu JZ, Song YX, Zhou ZQ, Cao BY. miR-182 selectively targets HOXA10 in goat endometrial epithelium cells in vitro. Reprod Domest Anim. 2017;52:1081–92.
Article
CAS
Google Scholar
Qi X, Wang T, Xue Q, Li Z, Yang B, Wang J. MicroRNA expression profiling of goat peripheral blood mononuclear cells in response to peste des petits ruminants virus infection. Vet Res. 2018;49:62.
Article
Google Scholar
Li B, Chen S, Wang C, Chen Q, Man C, An Q, et al. Integrated mRNA-seq and miRNA-seq analysis of goat fibroblasts response to Brucella Melitensis strain M5–90. PeerJ. 2021;9:e11679.
Article
Google Scholar
Wang SS, Chen D, He JJ, Zheng WB, Tian AL, Zhao GH, et al. Fasciola gigantica-derived excretory-secretory products alter the expression of mRNAs, miRNAs, lncRNAs, and circRNAs involved in the immune response and metabolism in goat peripheral blood mononuclear cells. Front Immunol. 2021;12:653755.
Article
CAS
Google Scholar
Turner ML, Healey GD, Sheldon IM. Immunity and inflammation in the uterus. Reprod Domest Anim. 2012;47:402–9.
Article
Google Scholar
Song Y, An X, Zhang L, Fu M, Peng J, Han P, et al. Identification and profiling of microRNAs in goat endometrium during embryo implantation. PLoS ONE. 2015;10:e0122202.
Article
Google Scholar
Zang X, Zhou C, Wang W, Gan J, Li Y, Liu D, et al. Differential microRNA expression involved in endometrial receptivity of goats. Biomolecules. 2021;11:472.
Article
CAS
Google Scholar
Xie Y, Liu G, Zang X, Hu Q, Zhou C, Li Y, et al. Differential expression pattern of goat uterine fluids extracellular vesicles miRNAs during peri-implantation. Cells. 2021;10:2308.
Article
CAS
Google Scholar
Wang J, Zhang X, Zhang J, Chen S, Zhu J, Wang X. Long noncoding RNA CRART16 confers 5-FU resistance in colorectal cancer cells by sponging miR-193b-5p. Cancer Cell Int. 2021;21:638.
Article
CAS
Google Scholar
Hu S, Zhao X, Mao G, Zhang Z, Wen X, Zhang C, et al. MicroRNA-455-3p promotes TGF-β signaling and inhibits osteoarthritis development by directly targeting PAK2. Exp Mol Med. 2019;51:1–13.
Article
CAS
Google Scholar
Li J, Lv H, Che Y. microRNA-381-3p confers protection against ischemic stroke through promoting angiogenesis and inhibiting inflammation by suppressing cebpb and Map3k8. Cell Mol Neurobiol. 2020;40:1307–19.
Article
CAS
Google Scholar
Ferreira França FB, Silva MV, Silva MF, Ramos ELP, Miranda VDS, Mota CM, et al. TNF-TNFR1 signaling enhances the protection against Neospora caninum infection. Front Cell Infect Microbiol. 2022;11:789398.
Article
Google Scholar
Mota CM, Oliveira AC, Davoli-Ferreira M, Silva MV, Santiago FM, Nadipuram SM, et al. Neospora caninum activates p38 MAPK as an evasion mechanism against innate immunity. Front Microbiol. 2016;7:1456.
Article
Google Scholar
Li S, Gong P, Tai L, Li X, Wang X, Zhao C, et al. Extracellular vesicles secreted by Neospora caninum are recognized by Toll-Like receptor 2 and modulate host cell innate immunity through the MAPK signaling pathway. Front Immunol. 2018;9:1633.
Article
Google Scholar
Li S, Gong P, Zhang N, Li X, Tai L, Wang X, et al. 14-3-3 protein of Neospora caninum modulates host cell innate immunity through the activation of MAPK and NF-κB pathways. Front Microbiol. 2019;10:37.
Article
Google Scholar
Tan R, Lee YJ, Chen X. Id-1 plays a key role in cell adhesion in neural stem cells through the preservation of RAP1 signaling. Cell Adh Migr. 2012;6:1–3.
Article
Google Scholar
Long JK, Dai W, Zheng YW, Zhao SP. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol Med. 2019;25:26.
Article
Google Scholar
Tao DL, Zhao SS, Chen JM, Chen X, Yang X, Song JK, et al. Neospora caninum infection induced mitochondrial dysfunction in caprine endometrial epithelial cells via downregulating SIRT1. Parasit Vectors. 2022;15:274.
Article
CAS
Google Scholar
Cannella D, Brenier-Pinchart MP, Braun L, van Rooyen JM, Bougdour A, Bastien O, et al. miR-146a and miR-155 delineate a microRNA fingerprint associated with Toxoplasma persistence in the host brain. Cell Rep. 2014;6:928–37.
Article
CAS
Google Scholar
Jiang D, Wu S, Xu L, Xie G, Li D, Peng H. Anti-infection roles of miR-155-5p packaged in exosomes secreted by dendritic cells infected with Toxoplasma gondii. Parasit Vectors. 2022;15:3.
Article
CAS
Google Scholar
Zhu S, Lu J, Lin Z, Abuzeid AMI, Chen X, Zhuang T, et al. Anti-tumoral effect and action mechanism of exosomes derived from Toxoplasma gondii-infected dendritic cells in mice colorectal cancer. Front Oncol. 2022;12:870528.
Article
Google Scholar
Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103:12481–6.
Article
CAS
Google Scholar
El-Akhras BA, Ali YBM, El-Masry SA, Bassyouni IH, El-Sayed IH, Talaat RM. mir-146a genetic polymorphisms in systemic lupus erythematosus patients: correlation with disease manifestations. Noncoding RNA Res. 2022;7:142–9.
Article
CAS
Google Scholar
Liu JN, Lu S, Fu CM. MiR-146a expression profiles in osteoarthritis in different tissue sources: a meta-analysis of observational studies. J Orthop Surg Res. 2022;17:148.
Article
Google Scholar
Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther. 2008;10:R101.
Article
Google Scholar
Garo LP, Ajay AK, Fujiwara M, Gabriely G, Raheja R, Kuhn C, et al. MicroRNA-146a limits tumorigenic inflammation in colorectal cancer. Nat Commun. 2021;12:2419.
Article
CAS
Google Scholar
Li Y, Li W, Lin J, Lv C, Qiao G. miR-146a enhances the sensitivity of breast cancer cells to paclitaxel by downregulating IRAK1. Cancer Biother Radiopharm. 2022;37:624–35.
CAS
Google Scholar
Shomali N, Mansoori B, Mohammadi A, Shirafkan N, Ghasabi M, Baradaran B. MiR-146a functions as a small silent player in gastric cancer. Biomed Pharmacother. 2017;96:238–45.
Article
CAS
Google Scholar
Wani JA, Majid S, Khan A, Arafah A, Ahmad A, Jan BL, et al. Clinico-pathological importance of miR-146a in lung cancer. Diagnostics (Basel). 2021;11:274.
Article
CAS
Google Scholar
Rau CS, Yang JC, Chen YC, Wu CJ, Lu TH, Tzeng SL, et al. Lipopolysaccharide-induced microRNA-146a targets CARD10 and regulates angiogenesis in human umbilical vein endothelial cells. Toxicol Sci. 2014;140:315–26.
Article
CAS
Google Scholar
Li Y, Zhu H, Wei X, Li H, Yu Z, Zhang H, et al. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition. Am J Transl Res. 2017;9:591–600.
Google Scholar
Hsieh YT, Chou YC, Kuo PY, Tsai HW, Yen YT, Shiau AL, et al. Down-regulated miR-146a expression with increased neutrophil extracellular traps and apoptosis formation in autoimmune-mediated diffuse alveolar hemorrhage. J Biomed Sci. 2022;29:62.
Article
CAS
Google Scholar
Zhang F, Wang J, Chu J, Yang C, Xiao H, Zhao C, et al. MicroRNA-146a induced by hypoxia promotes chondrocyte autophagy through Bcl-2. Cell Physiol Biochem. 2015;37:1442–53.
Article
CAS
Google Scholar