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Abstract 

Background  Rickettsiae are obligate intracellular Gram-negative bacteria that are the causative agent of rickettsioses 
and are spread to vertebrate hosts by arthropods. There are no previous reports of isolation of Rickettsia amblyomma-
tis for Colombia.

Methods  A convenience sampling was executed in three departments in Colombia for direct collection of adult 
ticks on domestic animals or over vegetation. Ticks were screened for the presence of Rickettsia spp. by real-time 
polymerase chain reaction (qPCR) amplifying the citrate synthase gene (gltA), and the positive sample was processed 
for isolation and further molecular characterization by conventional PCR. The absolute and relative frequencies were 
calculated for several tick species variables. All products from conventional PCR were further purified and sequenced 
by the Sanger technique. Representative sequences of 18 Rickettsia species were downloaded from GenBank. Consen‑
sus phylogenetic trees were constructed for the gltA, ompB, ompA, and htrA genes with 1000 replicates, calculating 
bootstrap values through the maximum likelihood method and the generalized time reversible substitution model 
in the MEGA 7.0 software program.

Results  One female Amblyomma mixtum collected on vegetation was amplified by qPCR (gltA), indicating a fre‑
quency of 1.6% (1/61) for Rickettsia spp. infection. Sequence analysis of a rickettsial isolate from this tick in BLASTn 
showed 100% identity with gltA (340 base pairs [bp]), 99.87% for ompB (782 bp), 98.99% for htrA (497 bp), and 100% 
for ompA (488 bp) to R. amblyommatis. Concatenated phylogenetic analysis confirmed these findings indicat‑
ing that the isolate is grouped with other sequences of Amblyomma cajennense complex from Panama and Brazil 
within the R. amblyommatis clade.

Conclusions  This paper describes the isolation and early molecular identification of a R. amblyommatis strain from A. 
mixtum in Colombia.
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Background
Rickettsiae are obligate intracellular Gram-negative bac-
teria that cause rickettsioses and are spread to verte-
brate hosts by arthropods such as ticks, fleas, lice, and 
mites [1]. A basal ancestral group, the typhus group, the 
transitional group, the spotted fever group (SFG), and 
the Tamurae/Ixodes Group (TIG) [2] are the five anti-
genic and genetic subgroups of rickettsiae [3, 4]. Today, 
the classification of new Rickettsia spp. strains is done 
by comparing their genomic sequences to the genome 
data of known strains [5]. Modern molecular techniques 
developed over the past few decades have made it easier 
to characterize new rickettsial species and have given 
rickettsiologists a chance to review some of the members 
of the genus [3, 4].

The field of rickettsiology made significant strides dur-
ing the first two decades of the twenty-first century, and 
today, more than 15 Rickettsia species, along with sev-
eral other unidentified members of this bacterial genus, 
are known to exist in the Neotropical region, primar-
ily linked to ticks [6, 7]. Rickettsia bellii and Rickettsia 
amblyommatis have been found in numerous tick species 
[8–10]. These rickettsial species have been discovered in 
almost every tick species in the Neotropics, revealing a 
wide phylogenetic diversity of ticks and molecular dif-
ferentiation of R. amblyommatis strains [11]. Although 
R. amblyommatis is widely distributed in the Neotropi-
cal region, it has not yet been determined whether it is a 
pathogen for vertebrates.

However, human clinical and serological evidence 
indicates that R. amblyommatis elicits a mild immune 
response [12, 13], with a macular rash at the tick bite site 
[14]. In animals, studies in guinea pig and mice models 
for R. amblyommatis infection elicited different immune 
responses. The guinea pig models presented several clini-
cal outcomes ranging from mild symptoms of the disease 
[15, 16] to severe vascular inflammation [17], whereas the 
immune response in mice was acute, with a significant 
loss of body weight during the first days after R. ambly-
ommatis infection [18]. On the other hand, there is evi-
dence that infection with R. amblyommatis can induce 
cross-protection against transmission of pathogenic rick-
ettsiae such as Rickettsia rickettsii or Rickettsia parkeri; 
hence, the presence of R. amblyommatis in the region 
may modify the epidemiology and severity of SFG rick-
ettsioses [15, 17].

This paper describes the isolation and early molecular 
identification of a R. amblyommatis strain from Ambly-
omma mixtum in Colombia. This discovery will help to 
promote research comparing R. amblyommatis genome 
sequences in South America, which will provide insights 
into the molecular and genetic processes of reduc-
tive genome evolution in Rickettsia, their interactions 

with other bacterial pathogens of medical importance, 
their adaptation to new tick vectors and environments, 
and their impact on vectorial competence and disease 
transmission.

Methods
Sample collection
A descriptive study was performed during 2019 and 2020 
in the departments of Arauca, Santander, and Cundi-
namarca in Colombia. The collection was approved by 
the Colombia National Environmental Licensing Author-
ity (ANLA) no. 0255, March 14, 2014, and the Bioethics 
Committee FMVZ-UNAL (Facultad de Medicina Veteri-
naria y de Zootecnia–Universidad Nacional de Colom-
bia) CB-088–2015. The sampling locations are shown in 
Fig.  1, and their specific data are summarized in a sup-
plementary table (Additional file  1: Table  S1). Conveni-
ence sampling was executed for direct collection of adult 
ticks in domestic animals (dogs, horses, cattle, or cats) 
or over vegetation, through flagging and dragging, with 
inspection every 10 m. The taxonomic status was defined 
according to Barros-Battesti for adults [19, 20], and one 
leg was removed for rickettsial screening. The classified 
samples were stored at −80 °C until further processing.

Molecular and phylogenetic analysis
DNA was extracted from tick legs using Quick-DNA 
MiniPrep Plus Kit (Zymo Research, Irvine, CA, USA) 
according to manufacturer indications. The presence of 
inhibitors in the DNA was evaluated by amplification of 
the tick 16S ribosomal RNA (rRNA) constitutive gene 
(Table 1) [21]. The detection of Rickettsia spp. DNA was 
done by quantitative real-time polymerase chain reaction 
(qPCR) for screening of the citrate synthase gene (gltA) 
using CS5 and CS6 primers (Table 1). Also, conventional 
PCR was performed for the characterization of several 
genes using the primers presented in Table 1.

Rickettsia sibirica DNA and molecular-grade water 
were used as positive and negative controls, respectively. 
The positive tick sample identified by screening was pro-
cessed for isolation.

The absolute and relative frequencies were calcu-
lated for several tick species variables, including place 
of collection, sex, source, and positivity. Positivity was 
defined as a sample with amplification of the gltA gene 
by PCR. All products from conventional PCR were 
further purified with ExoSAP-IT (Applied Biosystems, 
Waltham, MA, USA) and sequenced in triplicate by the 
Sanger technique using an ABI Prism 3130xl Genetic 
Analyzer (Applied Biosystems, Waltham, MA, USA) 
at the University of Texas Medical Branch (UTMB) 
Sequencing Core facility. The resultant electrophero-
grams were manually edited, compared, aligned, and 
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analyzed using the Nucleotide Basic Local Alignment 
Search Tool (BLASTn; https://​blast.​ncbi.​nlm.​nih.​gov/​
Blast.​cgi) and the ClustalW algorithm in MEGA 7.0 
software [29, 30]. Representative sequences for gltA, 
ompB, ompA, and htrA genes of nine Rickettsia strains 
with complete genomes were downloaded from Gen-
Bank. Gene sequences from the same strain were used 

for each gene. Individual sequences were aligned with 
ClustalW, and consensus sequences were subsequently 
manually formed for each species. The best substitution 
model was selected in MEGA 7.0. Consensus phyloge-
netic trees were constructed for gltA, ompB, ompA, and 
htrA genes with 1000 replicates, calculating bootstrap 
values through the maximum likelihood method in 
MEGA 7.0  software.

Fig. 1  A Municipalities sampled (in red) in three departments of Colombia (QGIS v3.22.5.). B Adult of Amblyomma mixtum in non-parasitic 
phase collected on vegetation in the department of Arauca (Colombia) and C Adult of A. mixtum in parasitic phase collected from cattle 
in the department of Arauca (Colombia)

Table 1  List of primers used for real-time and conventional PCR

Gene Primer name Sequences Size (bp) Annealing (°C) References

16S mitochondrial rRNA (16S mt 
rRNA)

16+ CCG​GTC​TGA​ACT​CAG​ATC​AAGT​ 472 50 Black and Piesman [22]

16− GCT​CAA​TGA​TTT​TTT​AAA​TTG​CTG​
TGG​

Citrate synthase (gltA) CS5 GAG​AGA​AAA​TTA​TAT​CCA​AAT​GTT​
GAT​

147 60 Guedes et al. [23]; Labruna et al. [24]

CS6 AGG​GTC​TTC​GTG​CAT​TTC​TT

Probe 6-FAMd (CAT​TGT​GCC​ATC​CAG​CCT​
ACGGT) BHQ-1 3

CS78 GCA​AGT​ATC​GGT​GAG​GAT​GTAAT​ 401 48 Labruna et al. [24]

CS323 GCT​TCC​TTA​AAA​TTC​AAT​AAA​TCA​
GGAT​

Outer-membrane protein B (ompB) 120-M59 CCG​CAG​GGT​TGG​TAA​CTG​C 862 54 Roux and Raoult [25]

120-807 CCT​TTT​AGA​TTA​CCG​CCT​AA

Outer-membrane protein 
A (ompA)

190-70p ATG​GCG​AAT​ATT​TCT​CCA​AAA​ 631 46 Regnery et al. [26]; Roux et al. [27]

190-701 GTT​CCG​TTA​ATG​GCA​GCA​TCT​

17 kDa surface antigen (htrA) 17KdsF GCT​CTT​GCA​ACT​TCT​ATG​TT 439 56 Webb et al. [28]

17KdsR CAT​TGT​TCG​TCA​GGT​TGG​CG

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Rickettsia isolation
Frozen A. mixtum tick samples were allowed to warm at 
room temperature and placed in a 0.2 µm bottle top filter 
(Corning, Corning, NY, USA). The samples were surface-
disinfected using a series of washes that consisted of 3% 
bleach (1×), sterile phosphate-buffered saline (PBS, 3×), 
70% ethanol (ETOH, 1×), and finally sterile PBS (3×) to 
ensure removal of all disinfectants. The tick was then 
homogenized with a Dounce homogenizer on ice in 1 ml 
of media (Dulbecco’s modified Eagle medium [DMEM] 
with 5% fetal bovine serum [FBS] and 1% HEPES) and 
aliquoted (250 µl) onto confluent Vero cell monolayers in 
a 24-well plate. After inoculation, the plates were centri-
fuged for 1 h at 700×g at 22 °C to facilitate the cell entry 
process. After centrifugation, the monolayers were rinsed 
with 1  ml of DMEM to remove any tick exoskeleton. 
Then 1 ml of media alone or media plus penicillin–strep-
tomycin (50 U/ml–50 µ/ml) was added to the inoculated 
cell monolayers and the plates were incubated at 34  °C 
with 5% CO2. After 48  h, the medium was changed to 
antibiotic-free medium containing 3% FBS. The cells 
were monitored daily for cytopathic effect (CPE) using 
an inverted microscope, and the infection was confirmed 
using Diff-Quik staining. Wells were harvested at 70% 
infection and inoculated into Vero confluent 25  cm2 
flasks and a replicate well stored at −80  °C. Cells were 
monitored until at least 70% infection as determined by 
Diff-Quik staining and spreading into Vero cells conflu-
ent in 150  cm2. Once the larger flask was at least 70% 
infected, the bacteria were further propagated, and DNA 
was extracted for sequencing as previously described.

Results
Sixty-one ticks were collected in all locations. Speci-
men information is presented in Table  2. The 16S mt 
rRNA was amplified in all samples, indicating molecular 
inhibitors were not present. Only one female of A. mix-
tum from Bocas del Arauca village (Arauca department 
and municipality, coordinates 7.015646°–70.584402°), 

collected on vegetation, was amplified by qPCR (gltA), 
indicating a frequency of 1.6% (1/61) for Rickettsia spp. 
infection. The isolation protocol was applied to this tick, 
and after three established passages, conventional PCR 
was performed. Sequence analysis in BLASTn showed 
100% identity with gltA (340 base pairs [bp]), 99.87% for 
ompB (782  bp), 98.99% for htrA (497  bp), and 100% for 
ompA (488  bp) to different strains of R. amblyommatis 
(MH521292, KY628368, CP012420, MN336348). Con-
catenated phylogenetic analysis confirmed these find-
ings, indicating that the isolate is grouped with other 
sequences of Amblyomma cajennense complex from Pan-
ama and Brazil within the R. amblyommatis clade (Fig. 2). 
The sequences obtained were deposited in GenBank with 
accession numbers OQ700977, OQ700978, OQ700979, 
and OQ700980, and the isolate was designated as R. 
amblyommatis strain Arauca and stored at the Galveston 
National Laboratory, TX, USA.

Discussion
According to Kaparthy et al., R. amblyommatis is consid-
ered the species of the SFG with the greatest distribution 
and prevalence in America [31]; therefore, its detection 
in Colombia is expected, and the present work amplifies 
its reports for this territory. In Colombia, there have been 
reports of this bacterium in A. cajennense s.l. and Rhipi-
cephalus microplus in the department of Cundinamarca; 
in Amblyomma longirostre, Amblyomma varium, and 
Ixodes spp. infesting birds in the department of Caldas; 
and in Amblyomma patinoi in humans from Antioquia 
[32–34].

There are multiple species of hard ticks in which the 
bacterium has been detected. For example, in Central 
America, approximately 10 species are involved, with 
minimum infection rates up to 91% in A. mixtum from 
Panama [35, 36]. Although four species of Amblyomma 
were identified from different regions of Colombia, the 
percentage of natural infection of R. amblyommatis was 
only 1.6% in the ticks studied. The absence of rickettsial 

Table 2  General data of the tick species according to origin place, source, and sex

Departments Tick species Source Females (no.) Males (no.)

Arauca Amblyomma mixtum Vegetation, Bos taurus 7 1

Cundinamarca Amblyomma maculatum Canis familiaris 2 0

Amblyomma ovale C. familiaris 1 13

Amblyomma patinoi C. familiaris, Equus asinus × Equus 
caballus, E. caballus

4 5

Rhipicephalus sanguineus s.l. C. familiaris 11 11

Santander Amblyomma mixtum Bos taurus 1 0

E. caballus 4 1

Total 30 31
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infection in A. maculatum, A. ovale, and A. patinoi could 
be due to the differences in the ecological conditions of 
each region studied for the maintenance of bacterial 
cycles, which in turn could have a negative impact on 
the ecology of rickettsiosis considering the phenomenon 
of transovarial interference that can occur in ticks [37]. 
On the other hand, the variation in hosts from which 
the ticks were collected could have an influence on the 
presence of Rickettsia in Amblyomma species, since the 
immunological response of each host could affect rickett-
sial amplification and subsequent tick acquisition [38].

In addition to molecular detection, in Colombia there 
is evidence of R. amblyommatis exposure in humans 
and animals, evidenced by the detection of antibodies 
against this species or against antigenically close species 
using indirect immunofluorescence assay (IFA) in human 
and animal samples from the departments of Antioquia 
and Arauca [39, 40]. This exposure is important mainly 
because of the role that these bacteria seem to play in 
rickettsiosis cycles. Rickettsia amblyommatis has an 
undetermined pathogenic role, although some studies 
have suggested a role in human infections. Due to anti-
genic cross-reaction between species of the SFG, expo-
sure to a non-pathogenic or low to moderately virulent 

species can generate antibodies that can prevent serious 
infections by highly virulent species [37]. For this reason, 
it could serve as a preventive model for cases of rickett-
siosis caused by R. rickettsii, which has also been histori-
cally reported in different Colombian regions [31, 41]. It 
is worth highlighting previous experimental studies with 
animal models that have supported this protective char-
acteristic of R. amblyommatis [15, 17].

Some animal models have suggested that R. amblyom-
matis can cause disease, which has led to the hypothesis 
that perhaps some strains may play a pathogenic role, 
thus highlighting the importance of bacterial isolation 
and further experimental trials as well [15, 17]. The iso-
lation of Rickettsia from Colombia has been limited to 
species such as R. rickettsii, R. parkeri strain Atlantic rain-
forest, and ‘Candidatus Rickettsia colombianensi,’ espe-
cially due to the complexity of technical and biosafety 
requirements [42–45]. Therefore, the first successful 
isolation of R. amblyommatis from Colombia achieved 
in this study contributes to the knowledge of this bac-
terium. This achievement will lead to the improvement 
and design of basic diagnostic tools, including the com-
parison between antigens by IFA, development of spe-
cific molecular tests, and the design of genetic, genomic, 
and proteomic characterization and comparison studies, 
among others.

Fig. 2  Molecular phylogenetic analysis of Rickettsia amblyommatis isolated from Colombia. Consensus phylogenetic tree of the concatenated gltA, 
ompB, htrA, and ompA genes for the sequences obtained from the Amblyomma mixtum isolate. The analysis was performed using the maximum 
composite likelihood approach with the generalized time reversible substitution model and gamma distribution. Branch supports were generated 
by bootstrap (1000 replicates). The tree was rooted with R. akari and R. australis species from the transitional group. A total of 19 Rickettsia strains 
were used. The final alignment presented 2104 nucleotides.
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