Shaalan EAS, Canyon DV: Aquatic insect predators and mosquito control. Review paper. Trop Biomed. 2009, 26 (3): 223-261.
PubMed
Google Scholar
Maguire M, Skelly C, Weinstein P, Moloney J: Simulation modelling of aedes aegypti prevalence, an environmental hazard surveillance tool for the control of dengue epidemics. Int J Environ Health Res. 1999, 9: 253-259.
Article
Google Scholar
Hay SI, Cox J, Rogers DJ, Randolph SE, Stern DI, Shanks DW, Myers MF, Snow RW: Climate change and the resurgence of malaria in the east African highland. Nature. 2002, 415: 905-909.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fradin MS: Mosquitoes and mosquito repellents: a clinician’s guide. Ann Intern Med. 1998, 128 (11): 931-949.
Article
CAS
PubMed
Google Scholar
World Health Organization (WHO): The global burden of disease: 2004 update. 2004, Geneva, Switzerland: World Health Organization, 9789241563710
Google Scholar
Lambin EF, Geist H: Land use and land cover change. 2006, Springer Berlin: Local processes and global impacts
Book
Google Scholar
Antonio-Nkondjio C, Ndo C, Costantini C, Awono-Ambene P, Fontenille D, Simard F: Distribution and larval habitat characterization of Anopheles moucheti, Anopheles nili, and other malaria vectors in river networks of southern Cameroon. Acta Trop. 2009, 112: 270-276.
Article
PubMed
Google Scholar
Afrane YA, Lawson BW, Brenya R, Kruppa T, Yan G: The ecology of mosquitoes in an irrigated vegetable farm in Kumasi, Ghana: abundance, productivity and survivorship. Parasit Vectors. 2012, 5: 233-
Article
PubMed Central
PubMed
Google Scholar
Otieno VO, Anyah RO: Effects of land use changes on climate in the greater horn of Africa. Climate Res. 2012, 52: 77-95.
Article
Google Scholar
Githeko AK, Lindsay SW, Confalonieri UE, Patz JA:Climate change and vector-borne diseases: a regional analysis. Special theme – environment and health. Bulletin of the World Health Organization 78 (9). 2000, Kisumu, Kenya: Kenya Medical Research Institute,
Google Scholar
Alemu A, Abebe G, Tsegaye W, Golassa L: Climatic variables and malaria transmission dynamics in jimma town, south west Ethiopia. Parasit Vectors. 2011, 4: 30-
Article
PubMed Central
PubMed
Google Scholar
Ghebreyesus TA, Haile M, Witten KH, Getachew A, Yohannes AM, Yohannes M, Teklehaimanot HD, Lindsay SW, Byass P: Incidence of malaria among children living near dams in northern Ethiopia: community based incidence survey. Brit Med J. 1999, 319 (7211): 663-666.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yewhalaw D, Legesse W, Bortel WV, Gebre-Selassie S, Kloos H, Duchateau L, Speybroeck N: Malaria and water resource development: the case of gilgel-gibe hydroelectric dam in Ethiopia. Malaria J. 2009, 8: 21-
Article
Google Scholar
Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G: Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am J Trop Med Hyg. 1999, 61: 1010-1016.
CAS
PubMed
Google Scholar
Shililu J, Ghebremeskel T, Mengistu S, Fekadu H, Zerom M, Mbogo C, Githure J, Gu W, Novak R, Beier JC: Distribution of anopheline mosquitoes in eritrea. Am J Trop Med Hyg. 2003, 69 (3): 295-302.
PubMed
Google Scholar
Kenea O, Balkew M, Gebre-Michael T: Environmental factors associated with larval habitats of anopheline mosquitoes (Diptera: Culicidae) in irrigation and major drainage areas in the middle course of the rift valley, central Ethiopia. J Vector Borne Dis. 2011, 48: 85-92.
PubMed
Google Scholar
Muturi EJ, Mwangangi J, Shililu J, Jacob BG, Mbogo C, Githure J, Novak RJ: Environmental factors associated with the distribution of Anopheles arabiensis and Culex quinquefasciatus in a rice agro-ecosystem in Mwea, Kenya. J Vector Ecol. 2008, 33 (1): 56-63.
Article
PubMed
Google Scholar
Kweka EJ, Zhou G, Gilbreath TM, Afrane Y, Nyindo M, Githeko AK, Yan G: Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands. Parasit Vectors. 2011, 4: 128-
Article
PubMed Central
PubMed
Google Scholar
Gouagna CL, Rakotondranary M, Lempérière G, Dehecq JS, Fontenille D: Abiotic and biotic factors associated with the presence of Anopheles arabiensis immatures and their abundance in naturally occurring and man-made aquatic habitats. Parasit Vectors. 2012, 5: 96-
Article
PubMed Central
PubMed
Google Scholar
World Health Organization (WHO): The work of the African network on vector resistance to insecticides, 2000-2004. 2005, Geneva, Switzerland: African Network on Vector Resistance
Google Scholar
Balkew M, Ibrahim M, Koekemoer L, Brooke BD, Engers H, Aseffa A, Gebre Michael T, Elhassen I: Insecticide resistance in anopheles arabiensis (Diptera: Culicidae) from villages in central, northern and south west Ethiopia and detection of kdr mutation. Parasit Vectors. 2010, 3: 40-
Article
PubMed Central
PubMed
Google Scholar
Yewhalaw D, Wassie F, Steurbaut W, Spanoghe P, Van Bortel W: Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS ONE. 2011, 6 (1): e16066-
Article
PubMed Central
CAS
PubMed
Google Scholar
Pfaehler O, Oulo DO, Gouagna LC, Githure J, Guerin J: Influence of soil quality in the larval habitat on development of Anopheles gambiae Giles. J Vector Ecol. 2006, 31 (2): 400-405.
Article
CAS
PubMed
Google Scholar
Yasuoka J, Levins R, Mangione TW, Spielman A: Community-based rice ecosystem management for suppressing vector anophelines in Sri Lanka. T Roy Soc Trop Med Hyg. 2006, 100 (11): 995-1006.
Article
Google Scholar
Walker K, Lynch M: Contributions of anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol. 2007, 21: 2-21.
Article
CAS
PubMed
Google Scholar
World Health Organization (WHO): Manual on environmental management for mosquito control with special emphasis on malaria vectors. 1982, Geneva: WHO Offset Publication No. 66
Google Scholar
Society of Wetland scientists (SWS): Current practices in wetland management for mosquito control. 2009, Wetlands concern committee, http://faculty.ucr.edu/~walton/Berg%20et%20al%202009%20SWS.pdf accessed December 20, 2012
Google Scholar
Berg JA, Felton MG, Gecy JL, Landerman AD, Mayhew CR, Mengler JL, Meredith WH, Read NR, Rey JR, Roberts C, Sakolsky GE, Walton WE, Wolfe RJ: Mosquito control and wetlands. Wetland Sci Pract Sect. 2010, 2: 24-34.
Google Scholar
Millennium Ecosystem Assessment: Ecosystems and human well-being: wetlands and water synthesis. 2005, Washington, DC: World Resources Institute
Google Scholar
Li L, Bian L, Yakob L, Zhou U, Yan G: Temporal and spatial stability of Anopheles gambiae larval habitat distribution in western Kenya highlands. Int J Health Geogr. 2009, 8: 70-
Article
PubMed Central
PubMed
Google Scholar
Ayala D, Costantini C, Ose K, Kamdem CG, Antonio-Nkondjio C, Agbor J, Awono-Ambene P, Fontenille D, Simard F: Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malaria J. 2009, 8: 307-
Article
Google Scholar
Obsomer V, Defourny P, Coosemans M: Predicted distribution of major malaria vectors belonging to the Anopheles dirus complex in Asia: ecological niche and environmental influences. PLoS ONE. 2012, 7 (11): e50475-
Article
PubMed Central
CAS
PubMed
Google Scholar
Anderson RP, Lew D, Peterson AT: Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model. 2003, 162: 211-232.
Article
Google Scholar
Li L, Bian L, Yakob L, Zhou G, Yan G: Analysing the generality of spatially predictive mosquito habitat models. Acta Trop. 2011, 119: 30-37.
Article
PubMed Central
PubMed
Google Scholar
National Meteorological Agency (NMA): http://www.ethiomet.gov.et (accessed on 4/4/2012)
Mereta ST, Boets P, Bayih AA, Malu A, Ephrem Z, Sisay A, Endale H, Yitbarek M, Jemal A, De Meester L, Goethals PLM: Analysis of environmental factors determining the abundance and diversity of macroinvertebrate taxa in natural wetlands of Southwest Ethiopia. Ecol Inf. 2012, 7: 52-61.
Article
Google Scholar
Parsons M, Thoms M, Norris R: AUSRIVAS (australian river assessment system) physical assessment protocol. 2001, Cooperative Research Centre for Freshwater Ecology University of Canberra, http://www.precisioninfo.com/ers-org/au/archive accessed June 20, 2013
Google Scholar
Posa MRC, Sodhi NS: Effects of anthropogenic land use on forest birds and butterflies in Subic Bay, Philippines. Biol Conserv. 2006, 129: 256-270.
Article
Google Scholar
APHA, AWWA, WPCF: Standard methods for the examination of water and wastewater. 1995, Washington D.C: American Public Health Association, 19
Google Scholar
Mutuku FM, Bayoh MN, Gimnig JE, Vulule JM, Kamau L, Walker ED, Kabiru E, Hawley WA: Pupal habitat productivity of Anopheles gambiae complex mosquitoes in a rural village in western Kenya. Am J Trop Med Hyg. 2006, 74: 54-61.
PubMed
Google Scholar
Gabriels W, Lock K, De Pauw N, Goethals PLM: Multimetric macroinvertebrate index Flanders (MMIF) for biological assessment of rivers and lakes in Flanders (Belgium). Limnologica. 2010, 40: 199-207.
Article
Google Scholar
Bouchard RW: Guide to aquatic macroinvertebrates of the upper Midwest. 2004, St.paul, MN: Water Resources Center, University of Minnosota, pp 208-
Google Scholar
Tomanova S, Goitia E, Helšic J: Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia. 2006, 556: 251-264.
Article
Google Scholar
Barbour MT, Gerritsen J, Griffith GE, Frydenborg R, McCarron E, White JS, Bastian ML: A framework for biological criteria for Florida streams using benthic macroinvertebrates. J N Am Benthol Soc. 1996, 15: 185-211.
Article
Google Scholar
Breiman L, Friedman JH, Olshen RA, Stone CG: Classification and regression trees. 1984, Belmont, California, USA: Wadsworth In-ternational Group
Google Scholar
De’ath G, Fabricius KE: Classification and regression trees: a powerful yet simple technique for the analysis of complex ecological data. Ecology. 2000, 81: 3178-3192.
Article
Google Scholar
Lewis RJ: An introduction to classification and regression tree (CART) analysis. 2013, California: Presented at the 2000 Annual Meeting of the Society for Academic Emergency Medicine in San Francisco, Doi10.1.1.95.4103
Google Scholar
Prasad AM, Inverson LR, Liaw A: Newer classification and regression techniques: bagging and random forests for ecological prediction. Ecosystems. 2006, 9 (2): 181-199.
Article
Google Scholar
Jongman RHG, ter Braak CEJ, Tongeren OER: Data analysis in community and landscape ecology. 1995, Cambridge, UK: Cambridge University Press, 2
Book
Google Scholar
ter Braak CJE, Prentice IC: A theory of gradient analysis. Adv Ecol Res. 1988, 18: 271-317.
Article
Google Scholar
Quinlan JR: C4.5: programs for machine learning. 1993, San Francisco: Morgan Kaufmann Publishers
Google Scholar
Witten IH, Frank E: Data mining: practical machine learning tools and techniques with java implementations. 2005, San Francisco: Morgan Kaufmann Publishers, pp 369-
Google Scholar
Speybroeck N: Classification and regression trees. Int J Public Health. 2012, 57: 243-246.
Article
CAS
PubMed
Google Scholar
Cohen J: A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960, 20: 37-46.
Article
Google Scholar
Gabriels W, Goethals PLM, Dedecker A, Lek S, De Pauw N: Analysis of macrobenthic communities in Flanders, Belgium, using a stepwise input variable selection procedure with artificial neural networks. Aquat Ecol. 2007, 41: 427-441.
Article
CAS
Google Scholar
ter Braak CJF, Šmilauer P: CANOCO reference manual and CanoDraw for windows User’s guide: software for canonical community ordination (version 4.5). 2002, Ithaca, NY: Microcomputer Power, 500-
Google Scholar
Statsoft, Inc: STATISTICA (data analysis software system version 7, 2004).http://www.statsoft.com,
Kamdem C, Fossog BT, Simard F, Etouna J, Ndo C, Kengne P, Boussès P, Etoa FX, Awono-Ambene P, Fontenille D, Antonio-Nkondjio C, Besansky NJ, Costantini C: Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae. PLoS ONE. 2012, 7 (6): e39453-
Article
PubMed Central
CAS
PubMed
Google Scholar
Norris DA: Mosquito-borne diseases as a consequence of land use change. Ecohealth. 2004, 1: 19-24.
Article
Google Scholar
Castro MC, Kanamori S, Kannady K, Mkude S, Killeen GF, Fillinger U: The importance of drains for the larval development of lymphatic filariasis and malaria vectors in Dar es salaam, united republic of Tanzania. PLoS Negl Trop Dis. 2010, 4: 693-
Article
Google Scholar
Broadbent EN, Asner GP, Keller M, Knapp DE, Oliveira PJC, Silva JN: Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol Conserv. 2008, 141: 1745-1757.
Article
Google Scholar
Paaijmans KP, Imbahale SS, Thomas BT, Willem T: Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malar J. 2010, 9: 196-
Article
PubMed Central
PubMed
Google Scholar
Culler LE, Lamp WO: Selective predation by larval Agabus (Coleoptera: Dytiscidae) on mosquitoes: support for conservationbased mosquito suppression in constructed wetlands. Freshwater Biol. 2009, 54: 2003-2014.
Article
Google Scholar
Knight TM, Chase JM, Goss CW, Knight JJ: Effects of interspecific competition, predation, and their interaction on survival and development time of immature Anopheles quadrimaculatus. J Vector Ecol. 2004, 29 (2): 277-284.
PubMed
Google Scholar
Bond JG, Arredondo-Jiménez JI, Rodríguez MH, Quiroz-Martínez H, Williams T: Oviposition habitat selection for a predator refuge and food source in a mosquito. Ecol Entomol. 2005, 30 (3): 255-263.
Article
Google Scholar
Ferrari MCO, Wisenden BD, Chivers DP: Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool. 2010, 88: 698-724.
Article
Google Scholar
Blaustein L, Kiflawi M, Eitam A, Mangel M, Cohen JE: Oviposition habitat selection in response to risk of predation in temporary pools: mode of detection and consistency across experimental venue. Oecologia. 2004, 138: 300-305.
Article
PubMed
Google Scholar
Charbonneau CS, Drobney RD, Rabeni CF: Effects of Bacillus thuringiensis var. Israelensis on nontarget benthic organisms in a lentic habitat and factors affecting the efficacy of the larvicide. Environ Toxicol Chem. 1994, 13 (2): 267-279.
Article
CAS
Google Scholar