Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH: How many species are infected with Wolbachia?–A statistical analysis of current data. FEMS Microbiol Lett. 2008, 281 (2): 215-220. 10.1111/j.1574-6968.2008.01110.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O'Neill SL: Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009, 323 (5910): 141-144. 10.1126/science.1165326.
Article
CAS
PubMed
Google Scholar
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P: The w Mel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011, 476 (7361): 450-453. 10.1038/nature10355.
Article
CAS
PubMed
Google Scholar
Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y: Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011, 476 (7361): 454-457. 10.1038/nature10356.
Article
CAS
PubMed
Google Scholar
Turelli M, Hoffmann AA: Rapid spread of an inherited incompatibility factor in California Drosophila. Nature. 1991, 353 (6343): 440-442. 10.1038/353440a0.
Article
CAS
PubMed
Google Scholar
Turelli M, Hoffmann AA: Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics. 1995, 140 (4): 1319-1338.
PubMed Central
CAS
PubMed
Google Scholar
Cook PE, McMeniman CJ, O'Neill SL: Modifying insect population age structure to control vector-borne disease. Adv Exp Med Biol. 2008, 627: 126-140. 10.1007/978-0-387-78225-6_11.
Article
CAS
PubMed
Google Scholar
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M: A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009, 139 (7): 1268-1278. 10.1016/j.cell.2009.11.042.
Article
PubMed
Google Scholar
Bian G, Xu Y, Lu P, Xie Y, Xi Z: The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog. 2010, 6 (4): e1000833-10.1371/journal.ppat.1000833.
Article
PubMed Central
PubMed
Google Scholar
Glaser RL, Meola MA: The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE. 2010, 5 (8): e11977-10.1371/journal.pone.0011977.
Article
PubMed Central
PubMed
Google Scholar
van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O'Neill SL: Impact of Wolbachia on infection with Chikungunya and Yellow Fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 2012, 6 (11): e1892-10.1371/journal.pntd.0001892.
Article
PubMed Central
PubMed
Google Scholar
Kambris Z, Cook PE, Phuc HK, Sinkins SP: Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science. 2009, 326 (5949): 134-136. 10.1126/science.1177531.
Article
PubMed Central
CAS
PubMed
Google Scholar
Min KT, Benzer S: Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci U S A. 1997, 94 (20): 10792-10796. 10.1073/pnas.94.20.10792.
Article
PubMed Central
CAS
PubMed
Google Scholar
Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC, Williams CR, Franklin CE, O'Neill SL, McGraw EA: Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol. 2009, 212 (Pt 10): 1436-1441.
Article
PubMed Central
PubMed
Google Scholar
Caragata EP, Real KM, Zalucki MP, McGraw EA: Wolbachia infection increases recapture rate of field-released Drosophila melanogaster. Symbiosis. 2011, 54 (1): 6-
Article
Google Scholar
De Crespigny FEC, Pitt TD, Wedell N: Increased male mating rate in Drosophila is associated with Wolbachia infection. J Evol Biol. 2006, 19 (6): 1964-1972. 10.1111/j.1420-9101.2006.01143.x.
Article
PubMed
Google Scholar
de Crespigny FEC, Wedell N: Wolbachia infection reduces sperm competitive ability in an insect. Proc Biol Sci. 2006, 273 (1593): 1455-1458. 10.1098/rspb.2006.3478.
Article
Google Scholar
Hedges LM, Brownlie JC, O'Neill SL, Johnson KN: Wolbachia and virus protection in insects. Science. 2008, 322 (5902): 702-10.1126/science.1162418.
Article
CAS
PubMed
Google Scholar
Peng Y, Nielsen JE, Cunningham JP, McGraw EA: Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl Environ Microbiol. 2008, 74 (13): 3943-3948. 10.1128/AEM.02607-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sasaki T, Kubo T, Ishikawa H: Interspecific transfer of Wolbachia between two lepidopteran insects expressing cytoplasmic incompatibility: a Wolbachia variant naturally infecting Cadra cautella causes male killing in Ephestia kuehniella. Genetics. 2002, 162 (3): 1313-1319.
PubMed Central
PubMed
Google Scholar
McGraw EA, Merritt DJ, Droller JN, O'Neill SL: Wolbachia density and virulence attenuation after transfer into a novel host. Proc Natl Acad Sci U S A. 2002, 99 (5): 2918-2923. 10.1073/pnas.052466499.
Article
PubMed Central
CAS
PubMed
Google Scholar
McMeniman CJ, O'Neill SL: A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis. 2010, 4 (7): e748-10.1371/journal.pntd.0000748.
Article
PubMed Central
PubMed
Google Scholar
Turley AP, Moreira LA, O'Neill SL, McGraw EA: Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Negl Trop Dis. 2009, 3 (9): e516-10.1371/journal.pntd.0000516.
Article
PubMed Central
PubMed
Google Scholar
Moreira LA, Saig E, Turley AP, Ribeiro JM, O'Neill SL, McGraw EA: Human probing behavior of Aedes aegypti when infected with a life-shortening strain of Wolbachia. PLoS Negl Trop Dis. 2009, 3 (12): e568-10.1371/journal.pntd.0000568.
Article
PubMed Central
PubMed
Google Scholar
Helinski ME, Valerio L, Facchinelli L, Scott TW, Ramsey J, Harrington LC: Evidence of polyandry for Aedes aegypti in semifield enclosures. Am J Trop Med Hyg. 2012, 86 (4): 635-641. 10.4269/ajtmh.2012.11-0225.
Article
PubMed Central
PubMed
Google Scholar
Jones JC: A study on the fecundity of male Aedes aegypti. J Insect Physiol. 1973, 19 (2): 435-439. 10.1016/0022-1910(73)90118-2.
Article
CAS
PubMed
Google Scholar
Choochote W, Tippawangkosol P, Jitpakdi A, Sukontason KL, Pitasawat B, Sukontason K, Jariyapan N: Polygamy: the possibly significant behavior of Aedes aegypti and Aedes albopictus in relation to the efficient transmission of dengue virus. Southeast Asian J Trop Med Public Health. 2001, 32 (4): 745-748.
CAS
PubMed
Google Scholar
Gwadz RW: Neuro-hormonal regulation of sexual receptivity in female Aedes aegypti. J Insect Physiol. 1972, 18 (2): 259-266. 10.1016/0022-1910(72)90126-6.
Article
CAS
PubMed
Google Scholar
Snook RR, Cleland SY, Wolfner MF, Karr TL: Offsetting effects of Wolbachia infection and heat shock on sperm production in Drosophila simulans: analyses of fecundity, fertility and accessory gland proteins. Genetics. 2000, 155 (1): 167-178.
PubMed Central
CAS
PubMed
Google Scholar
Moretti R, Calvitti M: Male mating performance and cytoplasmic incompatibility in a w Pip Wolbachia trans-infected line of Aedes albopictus (Stegomyia albopicta). Med Vet Entomol. 2012, 10.1111/j.1365-2915.2012.01061.x.
Google Scholar
May RM, Anderson RM: Population biology of infectious diseases: Part II. Nature. 1979, 280 (5722): 455-461. 10.1038/280455a0.
Article
CAS
PubMed
Google Scholar
Anderson RM, May RM: Population biology of infectious diseases: Part I. Nature. 1979, 280 (5721): 361-367. 10.1038/280361a0.
Article
CAS
PubMed
Google Scholar
Maciel-De-Freitas R, Codeco CT, Lourenco-De-Oliveira R: Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med Vet Entomol. 2007, 21 (3): 284-292. 10.1111/j.1365-2915.2007.00694.x.
Article
CAS
PubMed
Google Scholar
Briegel H, Knusel I, Timmermann SE: Aedes aegypti: size, reserves, survival, and flight potential. J Vector Ecol. 2001, 26 (1): 21-31.
CAS
PubMed
Google Scholar
Chadee DD, Beier JC: Factors influencing the duration of blood-feeding by laboratory-reared and wild Aedes aegypti (Diptera: Culicidae) from Trinidad, West Indies. Ann Trop Med Parasitol. 1997, 91 (2): 199-207.
CAS
PubMed
Google Scholar
Xue RD, Barnard DR, Schreck CE: Influence of body size and age of Aedes albopictus on human host attack rates and the repellency of deet. J Am Mosq Control Assoc. 1995, 11 (1): 50-53.
CAS
PubMed
Google Scholar
Blackmore MS, Lord CC: The relationship between size and fecundity in Aedes albopictus. J Vector Ecol. 2000, 25 (2): 212-217.
CAS
PubMed
Google Scholar
Naksathit AT, Scott TW: Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar. J Am Mosq Control Assoc. 1998, 14 (2): 148-152.
CAS
PubMed
Google Scholar
Ponlawat A, Harrington LC: Age and body size influence male sperm capacity of the dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol. 2007, 44 (3): 422-426. 10.1603/0022-2585(2007)44[422:AABSIM]2.0.CO;2.
Article
PubMed
Google Scholar
Westbrook CJ, Lounibos LP: Larval temperature and nutrition alter the susceptibility of Aedes aegypti mosquitoes to Chikungunya virus. Am J Trop Med Hyg. 2009, 81 (5): 68-68.
Google Scholar
Nasci RS, Mitchell CJ: Larval diet, adult size, and susceptibility of Aedes aegypti (Diptera, Culicidae) to infection with Ross River Virus. J Med Entomol. 1994, 31 (1): 123-126.
Article
CAS
PubMed
Google Scholar
Suwanchaichinda C, Paskewitz SM: Effects of larval nutrition, adult body size, and adult temperature on the ability of Anopheles gambiae (Diptera: Culicidae) to melanize Sephadex beads. J Med Entomol. 1998, 35 (2): 157-161.
Article
CAS
PubMed
Google Scholar
Takken W, Klowden MJ, Chambers GM: Effect of body size on host seeking and blood meal utilization in Anopheles gambiae sensu stricto (Diptera: Culicidae): the disadvantage of being small. J Med Entomol. 1998, 35 (5): 639-645.
Article
CAS
PubMed
Google Scholar
Briegel H: Fecundity, metabolism, and body size in Anopheles (Diptera: Culicidae), vectors of malaria. J Med Entomol. 1990, 27 (5): 839-850.
Article
CAS
PubMed
Google Scholar
Okanda FM, Dao A, Njiru BN, Arija J, Akelo HA, Toure Y, Odulaja A, Beier JC, Githure JI, Yan G: Behavioural determinants of gene flow in malaria vector populations: Anopheles gambiae males select large females as mates. Malaria J. 2002, 1: 10-10.1186/1475-2875-1-10.
Article
CAS
Google Scholar
Foster WA, Takken W: Nectar-related vs. human-related volatiles: behavioural response and choice by female and male Anopheles gambiae(Diptera: Culicidae) between emergence and first feeding. Bull Entomol Res. 2004, 94 (2): 145-157. 10.1079/BER2003288.
Article
CAS
PubMed
Google Scholar
Xue RD, Barnard DR: Human host avidity in Aedes albopictus: influence of mosquito body size, age, parity, and time of day. J Am Mosq Control Assoc. 1996, 12 (1): 58-63.
CAS
PubMed
Google Scholar
Xue RD, Edman JD, Scott TW: Age and body size effects on blood meal size and multiple blood feeding by Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1995, 32 (4): 471-474.
Article
CAS
PubMed
Google Scholar
Ponlawat A, Harrington LC: Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti. Am J Trop Med Hyg. 2009, 80 (3): 395-400.
PubMed
Google Scholar
Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, Johnson P, Ritchie SA, Richardson KM, Doig C, Endersby NM: Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics. 2011, 187 (2): 583-595. 10.1534/genetics.110.122390.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yuval B, Kaspi R, Field SA, Blay S, Taylor P: Effects of post-teneral nutrition on reproductive success of male mediterranean fruit flies (Diptera; Tephritidae). Florida Entomol. 2002, 85: 165-170. 10.1653/0015-4040(2002)085[0165:EOPTNO]2.0.CO;2.
Article
Google Scholar
Barry JD, McInnis DO, Gates D, Morse JG: Effects of irradiation on Mediterranean fruit flies (Diptera: Tephritidae): Emergence, survivorship, lure attraction, and mating competition. J Econ Entomol. 2003, 96 (3): 615-622. 10.1603/0022-0493-96.3.615.
Article
PubMed
Google Scholar
Blay S, Yuval B: Nutritional correlates of reproductive success of male Mediterranean fruit flies (Diptera: Tephritidae). Animal Behav. 1997, 54 (1): 59-66.
Article
Google Scholar
Taylor PW, Yuval B: Postcopulatory sexual selection in Mediterranean fruit flies: advantages for large and protein-fed males. Animal Behav. 1999, 58 (2): 247-254. 10.1006/anbe.1999.1137.
Article
Google Scholar
Trpis M: Autogeny in diverse populations of Aedes aegypti from East Africa. Tropenmed Parasitol. 1977, 28 (1): 77-82.
CAS
PubMed
Google Scholar
Foster WA, Lea AO: Renewable fecundity of male Aedes aegypti following replenishment of seminal vesicles and accessory glands. J Insect Physiol. 1975, 21 (5): 1085-1090. 10.1016/0022-1910(75)90120-1.
Article
CAS
PubMed
Google Scholar
McMeniman CJ, Hughes GL, O'Neill SL: A Wolbachia symbiont in Aedes aegypti disrupts mosquito egg development to a greater extent when mosquitoes feed on nonhuman versus human blood. J Med Entomol. 2011, 48 (1): 76-84. 10.1603/ME09188.
Article
PubMed
Google Scholar
Harrington LC, Edman JD, Scott TW: Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood?. J Med Entomol. 2001, 38 (3): 411-422. 10.1603/0022-2585-38.3.411.
Article
CAS
PubMed
Google Scholar
Boggs C: Male nuptial gifts: phenotypic consequences and evolutionary implications. Insect reproduction. Edited by: Leather S, Hardie J. 1995, New York: CRC Press, 215-242.
Google Scholar
Gwynne D: Katydids and bush crickets: reproductive behaviour and evolution of the Tettigoniidae. 2001, Ithaca, NY: Cornell University Press
Google Scholar
Thornhill R: Sexual selection and paternal investment in insects. Am Nat. 1976, 110: 153-163. 10.1086/283055.
Article
Google Scholar
Vahed K: The function of nuptial feeding in insects: review of empirical studies. Biol Rev. 1998, 73: 43-78. 10.1017/S0006323197005112.
Article
Google Scholar
Friedel T, Gillott C: Contribution of male-produced proteins to vitellogenesis in Melanoplus sanguinipes. J Insect Physiol. 1977, 23 (1): 145-151. 10.1016/0022-1910(77)90120-2.
Article
CAS
PubMed
Google Scholar
Attardo GM, Hansen IA, Raikhel AS: Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol. 2005, 35 (7): 661-675. 10.1016/j.ibmb.2005.02.013.
Article
CAS
PubMed
Google Scholar
Borovsky D: The role of the male accessory-gland fluid in stimulating vitellogenesis in Aedes taeniorhynchus. Arch Insect Biochem Physiol. 1985, 2 (4): 405-413. 10.1002/arch.940020408.
Article
CAS
Google Scholar
Downe AER: Internal regulation of rate of digestion of blood meals in mosquito, Aedes aegypti. J Insect Physiol. 1975, 21 (11): 1835-1839. 10.1016/0022-1910(75)90250-4.
Article
CAS
PubMed
Google Scholar
Klowden MJ, Chambers GM: Male accessory-gland substances activate egg development in nutritionally stressed Aedes aegypti mosquitos. J Insect Physiol. 1991, 37 (10): 721-726. 10.1016/0022-1910(91)90105-9.
Article
CAS
Google Scholar
Hurd H, Webb TJ: Parasites and pathogens: effects on host hormones and behaviour. 1997, New York: Chapman & Hall
Google Scholar
Renshaw M, Hurd H: The effects of Onchocerca lienalis infection on vitellogenesis in the British blackfly, Simulium ornatum. Parasitol. 1994, 109 (Pt 3): 337-343.
Article
Google Scholar
Sun S, Cline TW: Effects of Wolbachia infection and ovarian tumor mutations on Sex-lethal germline functioning in Drosophila. Genetics. 2009, 181 (4): 1291-1301. 10.1534/genetics.108.099374.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jacobson MD, Weil M, Raff MC: Programmed cell death in animal development. Cell. 1997, 88 (3): 347-354. 10.1016/S0092-8674(00)81873-5.
Article
CAS
PubMed
Google Scholar
Shen J, Tower J: Programmed cell death and apoptosis in aging and life span regulation. Discov Med. 2009, 8 (43): 223-226.
PubMed
Google Scholar
McCall K: Eggs over easy: cell death in the Drosophila ovary. Dev Biol. 2004, 274 (1): 3-14. 10.1016/j.ydbio.2004.07.017.
Article
CAS
PubMed
Google Scholar
Aitken RJ, Findlay JK, Hutt KJ, Kerr JB: Apoptosis in the germ line. Reproduction. 2011, 141 (2): 139-150. 10.1530/REP-10-0232.
Article
CAS
PubMed
Google Scholar
Zhukova MV, Kiseleva E: The virulent Wolbachia strain w MelPop increases the frequency of apoptosis in the female germline cells of Drosophila melanogaster. BMC Microbiol. 2012, 12 (Suppl 1): S15-10.1186/1471-2180-12-S1-S15.
Article
PubMed Central
PubMed
Google Scholar
Turelli M: Cytoplasmic incompatibility in populations with overlapping generations. Evolution. 2010, 64 (1): 232-241. 10.1111/j.1558-5646.2009.00822.x.
Article
PubMed
Google Scholar
Hoffmann AA, Turelli M, Harshman LG: Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics. 1990, 126: 933-948.
PubMed Central
CAS
PubMed
Google Scholar