Open Access

When mites attack: domestic mites are not just allergens

Parasites & Vectors20147:411

https://doi.org/10.1186/1756-3305-7-411

Received: 16 May 2014

Accepted: 13 August 2014

Published: 29 August 2014

Abstract

Domestic mite species found in indoor environments and in warm or tropical regions are well known for causing allergic disorders. However, little is known about human acariasis, in which mites invade and parasitize the human body in various tissues from the gastrointestinal tract to the lung. Here, we summarize the reported cases of human acariasis of pulmonary, intestinal, oral (anaphylaxis), urinary, otic, and vaginal systems. Because the clinical symptoms of acariasis often overlap with other disease symptoms leading to frequent misdiagnosis, we highlight the need for more attention on these infections.

Keywords

Human acariasis Pulmonary acariasis Intestinal acariasis Urinary acariasis Oral mite anaphylaxis (Pancake Syndrome) Otoacariasis Vaginal acariasis

Background

“Domestic mites” refers to a variety of small (0.5 mm) arthropods found living in close proximity to humans (Table 1). They include house dust mites and storage mites. Typically belonging to the family Pyroglyphidae (Analgoidea, Astigmata, Acariformes), the house dust mites are commonly found in human homes. Some other mites can be present in house dust, especially several species from the families Glycyphagidae, Aeroglyphidae Chortoglyphidae, Echimyopodidae, Tyroglyphidae, Lardoglyphidae, and Suidasiidae, as well as species of the families Tarsonemidae and Cheyletidae. The latter are typically regarded as storage mites because they occur widely in-and contribute to the deterioration in quality of—stored products like grains, foodstuffs, and Chinese medicinal herbs [1, 2]. They are also found in mattresses, pillows, and upholstery. Both the pyroglyphid mites and other mite species that are found in house dust can provoke an IgE antibody response in people worldwide [316]. These mites have been widely studied because their feces, eggs, and extracts from their bodies are potent allergens. Indeed, approximately 10% of the total population and 90% of asthmatic patients are allergic to domestic mites [17].
Table 1

The taxonomy of domestic mites and common species

Common names

Super family

Family

Genus

Species

House dust mites

Analgoidea

   
  

Pyroglyphidae

  
   

Dermatophagoides

D. pteronyssinus

    

D. farinae

    

D. microceras

    

D. siboney

    

D. evansi

    

D. neotropicalis

   

Hirstia

H. chelidonis

    

H. domicola

   

Sturnophagoides

S. bakeri

   

Malayoglyphus

M.intermedius

    

M.carmelitus

   

Euroglyphus

E. maynei

   

Gymnoglyphus

G.longior

   

Hughesiella

H. africana

Storage mites

Glycyphagoidea

   
  

Chortoglyphidae

Chortoglyphus

C. arcuatus

  

Echimyopodidae

Blomia

B. tropicalis

  

Aeroglyphidae

Glycycometus

G. malaysiensis

  

Glycyphagidae

Gohieria

G. fuscus

   

Glycyphagus

G. domesticus

   

Lepidoglyphus

L. destructor

 

Acaroidea

   
  

Tyroglyphidae

Acarus

A. siro

   

Tyrophagus

T. putrescentiae

   

Aleuroglyphus

A. ovatus

  

Suidasiidae

Suidasia

S. nesbitti

    

S. medanensis

  

Lardoglyphidae

Lardoglyphus

L. zacheri

    

L. konoi

Although domestic mites are well known allergens, they are also responsible for other, non-allergic, symptoms in humans, called acariasis. Little is known about acariasis, in which mites invade and parasitize the human body in various tissues from the gastrointestinal tract to the lung. Mites, throughout their lives or during individual life cycle stages, commonly parasitize animals, and some free-living mites can invade a host only occasionally. When domestic mites invade a human body, it is believed to be a non-specific invasion differing from parasitization of an animal, because the non-specific invasion occurs only occasionally and lacks specific symptoms and are not caused by specific mite species; in contrast, specific invasions are caused by specific parasite species occurring in specific hosts and producing specific symptoms [18]. To date, few reports of human acariasis have been published in English medical journals. However, acariasis has been described for pulmonary, intestinal, oral (anaphylaxis), urinary, otic, and vaginal systems. Importantly, the clinical symptoms of acariasis are non-specific and often overlap with other disease symptoms, leading to frequent misdiagnosis and, likely, many missed cases. In this review, we present the types of acariasis that have been described, and summarize the current knowledge about these little known and little-understood infestations (Table 2).
Table 2

A simple summary of reported cases of human acariasis

Acariasis types

Location (s)

Mite species

Symptoms

Diagnosis

Treatment

Refs

Pulmonary

E. Africa, Korea, China

Acarus siro, Tyrophagus putrescentiae, Aeuroglyphus ovatus, Caloglyphus berlesei, Thyreophagus entomophagus, Suidasia nesbitti, Dermatophagoides farinae, D. pteronyssnius, Euroglyphus maynei, Tarsonemus granarius, Tarsonemus floricolus Chortoglyphus arcuatus, Cheyletus malaccensis. Cheyletus eruditus, Caloglyphus mycophagus, Largoglyphus zacheri, Lardoglyphus konoi.

Continuous dry cough, wheezing, pain in the chest, increasing dyspnea, bronchiectasis

Identifying mites in sputum

Organo-arsenic drugs like carbarsone and acetarsol, as well as drugs like hetrazan, thiodiphenyl-amine, emetine, and some antibiotics

[1922]

Intestinal

Spain, China

Dermatophagoides farinae, D. pteronyssinus, Acarus siro, Tyrophagus putrescentiae, Tyrophagus longior,Carpoglyphus domesticus, Glycyphagus domesticus, G.ornatus, G. privatus, Carpoglyphus lactis and Tarsonemus granarius, Suidasia mites

Diarrhea, abdominal pain, abdominal discomfort, mucous stools, blood and pus, anal burning sensation, fatigue, weight loss, lack of energy, asthma, vomiting, loss of appetite, fever

Identifying mites in stools

ivermectin

[2129]

Urinary

Canada, Romania China, S. Africa

Histiogaster, Acarus siro, Tyrophagus putrescentiae, T. longior, Aleuroglyphus ovatus, Caloglyphus berlesei, C. mycophagus, Suidasia nesbitti, Lardoglyphus konoi, Glycyphagus domesticus, Carpoglyphus lactis, Lepidoglyphus destructor, Dermatophagoides farinae, D. pteronyssinus, Euroglyphus maynei, Caloglyphus hughesi, Tarsonemus granarius and T. hominis

Frequent desire to urinate, pyelonephritis, and pyelocystitis

Identifying mites in urine

Chloro-quine, metro-nidazole

[5863]

Oral (Anaphylaxis)

Japan, Canada, Spain

Dermatophagoides farinae, Dermatophagoides pteronyssinus, Tyrophagus putrescentiae, Thyreophagus entomophagus, Blomia freemani, Blomia tropicalis, Suidasia medanensis, Aleuroglyphus ovatus, Lepidoglyphus destructor

Sudden onset of lip and tongue swelling, throat tightness and shortness of breath, angioedema, wheezing, rhinorrhea, etc.

Anaphylaxis

Intramuscular epinephrine, antihistamines and steroids

[3040]

Otic

China, Taiwan, Thailand

Dermatophagoides pteronyssinus, Suidasia pontifica

Severe itching, feeling of insects crawling in the ear

Otoscopic examination of mites

Eardrops containing triamcinolone, nystatin, neomycin and gramicidin

[6466]

Vaginal

China

-

Vaginal itching, increased leukorrhea, low back pain, abdominal pain, and a sensation of abdomen falling

Identifying mites on leukorrhea smears

Metronidazole (3 times every day)

[67]

Review

Pulmonary acariasis

Pulmonary acariasis is a non-specific infestation of human lungs by free-living mites. In the 1930s, mites were observed in human sputum [4]. Subsequent experiments demonstrated that free-living mites can invade animal lungs and live in the respiratory tract. Indeed, Carter et al.[19] detected mites in sputum from 60.71% (17/28) of asthmatic patients. Interestingly, the authors thought the mites were derived from contamination of the test vessel because the detected mite species were present in dust samples from the same hospital and wards. After ruling out possible contamination, the authors repeatedly tested the sputum samples and obtained the same results. Among those 17 patients, one had severe asthma and had mites in his lungs for more than 7 months. Blood examination showed increased eosinophil numbers in all 17 patients. After treating patients with arsenic, the numbers of mites in their sputum samples increased, which showed that mites in the lungs were driven out, before the numbers of mites decreased and patients’ symptoms resolved [19].

Since that initial report, a number of other cases of pulmonary acariasis have been documented. In 1947, mites were detected in sputum of 3 out of 28 patients with tropical eosinophilia in East Africa [20]. In China, Gao et al.[21] reported for the first time that Tyrophagus and Tarsonemus were found in sputum of a bronchiectasis patient [21]. Ryu et al.[22] reported that a 23-year-old medical student showed a positive reaction on a skin test for Paragonimus westermani, and two Tarsonemus floricolus mites were subsequently found by sputum examination and identified morphologically. This was the first human infection with Tarsonemus reported in Korea. Further, in 2007 a new process for identifying mites in sputum was developed. Martínez-Girón R et al.[23] demonstrated that dust mites artificially introduced into sputa could be identified after sputa were liquified with bleach and the liquid sample was observed under the microscope. Their approach offers a time- and cost-saving tool for identifying dust mites in sputum, but the test is not commonly applied in the clinic because acariasis is not well recognized.

Van Woerden [24] proposed that asthma in house dust mite-sensitive patients may be caused by recurrent inhalation of live dust mites that are able to live for some time in the bronchioles of the lung. The mites may provide their own food source by excreting proteolytic enzymes—including the protein Der p 1, a major allergen—that free cells from the basement membrane to increase epithelial shedding. Shed respiratory epithelial cells can then be consumed by mites. However, this loss of respiratory epithelium can provoke sensitization to the dust mite proteins and other allergens, which later results in asthma symptoms. Indeed, the association between pulmonary acariasis and asthma has been demonstrated across studies.

Several papers published in Chinese reported on the etiology, pathology, diagnosis, and treatment of pulmonary acariasis. Their work suggested that the occurrence of pulmonary acariasis is related to occupation, with individuals who work in production, processing, and storage of food and herbs having higher risks of infection [2527]. A few reports from China indicated that the infection rate and prevalence were highest in people aged 36-45 years, the second-highest rates were in 26-35 and 16-25 year-old people [28, 29]. Further, males were more commonly infected. However, these patterns may be influenced by occupational characteristics.

There are no specific clinical manifestations that point to pulmonary acariasis, beyond detection of mites in sputum. Patients with mild cases exhibit cold-like or bronchitis-like symptoms. Patients with severe cases often appear to have tuberculosis, pleurisy, or asthma, exhibiting symptoms such as cough, increased sputum volume, chest pain, shortness of breath, fatigue, fever, irritability, blood in sputum, and hemoptysis. A few patients have a severe cough in the morning and evening, accompanied by back pain, headache, dizziness, abdominal pain, and diarrhea. Except for increased eosinophil counts, no abnormalities are detected for red blood cells, hemoglobin, platelets, or liver function. A chest x-ray may show enhanced shadow in the hilar region and increased marking in the depth. Thus, pulmonary acariasis is often misdiagnosed as bronchitis, hilar lymphadenopathy, lung fluke disease, tuberculosis, or pleurisy [3034]. Clinicians therefore proposed that, along with chest x-ray and blood counts, occupational history can be used for differential diagnosis. Treatment for pulmonary acariasis includes organoarsenic drugs like carbarsone and acetarsol, as well as drugs like hetrazan, thiodiphenylamine, emetine, and some antibiotics [3034].

Chen et al.[35] reported typical nodular foci developed in the lungs of guinea pigs six days after five mite species, Aeuroglyphus ovatus, Suidasia nesbitti, Dermatophagoides farinae, Tyrophagus putrescntae, and Acarus siro, were injected into the tracheas. The foci occurred in all parts of the lobes, and were found to be yellow in fresh tissues and ranged from one to five millimeters in diameter. The pathological changes were associated mainly with bronchial and peribronchial lesions. Eosinophil infiltration was not observed in the lungs 20 days later. Multiple multinucleate giant cells grew and there was a striking formation of foreign body granuloma with the involvement of blood vessels. The parasitic mites were usually found in association with some arterioles. It was therefore demonstrated that guinea pigs offer an appropriate animal model for the study of pulmonary acariasis and that the five mites-species possess the same pathogenesis [35].

Intestinal acariasis

Intestinal acariasis is caused by ingestion of mite-contaminated foods. This invasion of the human gastrointestinal tract can cause symptoms including diarrhea, abdominal pain, and burning sensation around the anus. The first case of intestinal acariasis was reported by Hinman & Kammeier [36], who detected Tyrophagus longior (Tyroglyphidae) in human intestine [36]. Three cases of intestinal acariasis were described in Spain; one of these was Suidasia mites [37]. Several cases of diarrhea were reportedly caused by Carpoglyphus lactis, presumed to have been transmitted through contaminated imported sugar [18, 38]. Other studies have identified cases of abdominal pain, diarrhea, fatigue, and pyohemofecia attributable to Dermatophagoides farinae, D. pteronyssinus, Acarus siro, Tyrophagus putrescentiae, Carpoglyphus domesticus, Glycyphagus domesticus, G. privatus, and Tarsonemus granarius[3941]. Interestingly, an allergic intestinal acariasis syndrome has also been described [42]. Occasionally mite eggs, rather than (or in addition to) mites, have been found in stools [43, 44]. Indeed, Werneck et al. indicated that stool samples containing mite eggs, which were sometimes accompanied by adult mites, may often be misidentified as helminth ova, leading to erroneous treatment with far-reaching consequences [44].

Both direct fecal smear and a saturated salt solution floating method can be used for detection of mites in larva, adult, live, dead, or egg stage. Zhang et al. developed an avidin-biotin system enzyme-linked immunosorbent assay (ABC-ELISA) to aid diagnosis of intestinal acariasis [45]. Further, Li [46] suggested the broad-spectrum antiparasitic drug ivermectin as the first choice for treatment of human intestinal acariasis [46].

Oral mite anaphylaxis (Pancake Syndrome)

In 1993, Erben et al. observed the first case of systemic anaphylaxis to mite-contaminated foods; the patient was treated with 0.3 mL of 1:1000 subcutaneous epinephrine, 75 mg oral diphenhydramine, and 40 mg of prednisone, and the symptoms gradually subsided over 90 minutes [47]. Later reports have described similar findings [4854]. The name Pancake Syndrome derives from the commonality of patients being infected by mite-contaminated flour products. Indeed, a recent report by Takahashi et al.[55] summarized 36 cases with oral mite anaphylaxis in Japan. Of those, 34 had ingested okonomiyaki or takoyaki, Japanese pancakes prepared at home using mixes that were previously opened and stored for months at ambient temperature. Microscopic examination of those mixes revealed contamination with mites such as Dermatophagoides farinae, Tyrophagus putrescentiae, and Dermatophagoides pteronyssinus[55].

Matsumoto et al. indicated that two cases who developed systemic anaphylaxis shortly after eating food contaminated by a storage mite, Tyrophagus putrescentiae, were sensitive to storage mites but not to food allergens [49]. Similarly, Blanco et al.[56] investigated sixteen patients with respiratory allergies to dust mites and reported three of six food challenges with contaminated flours resulted in systemic reactions. Microscopic examination of four flours implicated in allergic reactions revealed a high degree of mite contamination: Dermatophagoides farinae in one case and Thyreophagus entomophagus in three cases [56]. Other reports identified Blomia freemani and Thyreophagus entomophagus in wheat flour as the source of anaphylaxis [51, 57]. Thus, ingestion of foods contaminated with mites may induce systemic anaphylactic reactions in patients with respiratory allergy to mites [56]. Systemic anaphylaxis can occur after the ingestion of heated or unheated mite-contaminated foods, and the most common symptoms are breathlessness, angioedema, wheezing, and rhinorrhea, beginning between 10 and 240 minutes after eating [50].

Urinary acariasis

Urinary acariasis results from the presence of mites in the human urinary system. The first report of mites detected in human urine was published in 1938. These mites were identified as Histiogaster of the Tyroglyphidae family of storage mites [58]. Since then, other cases of urinary acariasis have been reported [59, 60]. One report described 7 cases with primary infection, pyelonephritis, and pyelocystitis resulting from numerous mites in the urinary sediment and, in some cases, also their eggs—some of which were motile, others were encrusted with salts [61]. One report indicated that, in a case with a few mite eggs in the urine, a six-legged mite larva emerged after the eggs were squashed on the slide. The authors suggest that the possibility of gut or bladder mite infection should be entertained only after repeated identification of mites in urine or stool samples from a symptomatic patient with no other cause for the symptoms and where the possibilities of contamination and spurious infection have been excluded [62].

Interestingly, a study in China of a sampling of individuals across different occupations indicated that 3.46% (69/1994) of urine samples contained adults, larvae, or eggs of mites [63]. Mites can damage urethral epithelia because they are good at digging. Furthermore, they can also invade loose connective tissue and small blood vessels in the urinary tract and cause localized ulcers. Undoubtedly, mites detected in urine under a microscope would contribute to diagnosis of this disease. Both chloroquine and metronidazole produce good responses for human urinary acariasis [46]. However, the pathogenesis of urinary acariasis remains uncertain.

Otoacariasis

Less commonly, otoacariasis—or mite infestation in the ear—has been described. Mites were observed on the crusts taken from the radical mastoidectomy cavity and on the earwax from the external auditory canal of a female peasant in China; nearly all stages of the life cycle of the parasite were observed [64]. Similarly, a 70-year-old man in Taiwan presented with a 2-month history of pruritus and a sense of fullness in the right ear, and otoscopic examination revealed a number of mites and mite eggs in the right external auditory canal, which were identified as the house dust mite Dermatophagoides pteronyssinus[65]. This patient was treated with eardrops containing triamcinolone, nystatin, neomycin and gramicidin. Finally, in Thailand the external auditory canal of a 57-year-old woman was infested with >20 mites [66].

Vaginal acariasis

In what is probably a similar mechanism to that for urinary acariasis, mites can parasitize the vagina. Chang et al.[67] described two cases of vaginal acariasis whose main symptoms were vaginal itching, increased leukorrhea, low back pain, abdominal pain, and a sensation of abdomen falling. Microscopic examination detected mites on leukorrhea smears [67]. Both patients were treated with metronidazole (3 times every day), which resulted in resolution of the infection.

Conclusions

Domestic mites receive a lot of research and clinical attention because of their known allergenicity. However, their parasitic activities in humans are often overlooked. Given the existing reports, it seems likely that most cases of acariasis occur in more tropical climates and in people with occupational exposures to mites. The potential remains, though, that cases of acariasis go undiagnosed in other temperate climates. Considering the potential for misdiagnosis of acariasis, more effort should be devoted to understanding these infections, recognizing the populations most at-risk for infection, raising awareness among physicians for potential diagnosis, and identifying the best treatment options for each type of infection. This review highlights what is known about mites as human parasites, while also making clear that more work needs to be done to shed light on the occurrence of mite invasion and its associated symptoms.

Declarations

Acknowledgments

This work was supported by National Sciences Foundation of China (NSFC 30060166, NSFC81001330, NSFC31272369).

Authors’ Affiliations

(1)
Department of Laboratory Medicine, Yancheng Health Vocational & Technical College

References

  1. Fang W, Cui YB: A survey of stored product mites of traditional Chinese medicinal materials. Pan-Pac Entomol. 2009, 85: 174-181. 10.3956/2007-42.1.View ArticleGoogle Scholar
  2. Cui YB, Li CP, Wang J, Yang QG, Tian Y: Acaroid mites (Acari: Astigmata) in Chinese medicinal herbs. Ann Trop Med Parasitol. 2003, 97: 865-873. 10.1179/000349803225002651.View ArticlePubMedGoogle Scholar
  3. Wong SF, Chong AL, Mak JW, Tan J, Ling SJ, Ho TM: Molecular identification of house dust mites and storage mites. Exp Appl Acarol. 2011, 55: 123-133. 10.1007/s10493-011-9460-6.View ArticlePubMedGoogle Scholar
  4. Sander I, Zahradnik E, Kraus G, Mayer S, Neumann HD, Fleischer C, Brüning T, Raulf-Heimsoth M: Domestic mite antigens in floor and airborne dust at workplaces in comparison to living areas: a new immunoassay to assess personal airborne allergen exposure. PLoS One. 2012, 7: e52981-10.1371/journal.pone.0052981.PubMed CentralView ArticlePubMedGoogle Scholar
  5. Cui Y, Zhou P, Peng J, Peng M, Zhou Y, Lin Y, Liu L: Cloning, sequence analysis, and expression of cDNA coding for the major house dust mite allergen, Der f 1, in Escherichia coli. Braz J Med Biol Res. 2008, 41: 380-388.View ArticlePubMedGoogle Scholar
  6. Cui Y, Zhou Y, Ma G, Yang L, Wang Y, Shi W: Cloning, bioinformatics analysis, and expression of the dust mite allergen Der f 5 of Dermatophagoides farinae. Braz J Med Biol Res. 2012, 45: 746-752. 10.1590/S0100-879X2012007500077.PubMed CentralView ArticlePubMedGoogle Scholar
  7. Cui Y, Zhou Y, Shi W, Ma G, Yang L, Li L: Molecular cloning, expression, sequence analyses of dust mite allergen Der f 6 and its IgE-binding reactivity with mite allergic asthma patients in southeast China. Mol Biol Rep. 2012, 39: 961-968. 10.1007/s11033-011-0822-2.View ArticlePubMedGoogle Scholar
  8. Cui YB, Zhou Y, Wang N, Teng FX, Yu LL, Bian YH, Song JX, Yang L, Zhang CB: Expression, cloning, and IgE-binding of the full-length dust mite allergen Der f 8. Immunol Res. 2014, Epub ahead of print PMID 24838264Google Scholar
  9. Cui Y, Zhou Y, Ma G, Shi W, Yang L, Wang Y: Establishment of two novel ELISA methods for Dermatophagoides farinae-specific IgE detection with recombinant group 2 allergen. Ann Clin Lab Sci. 2012, 42: 392-396.PubMedGoogle Scholar
  10. Cui YB, Cai HX, Zhou Y, Gao CX, Shi WH, Yu M, Li L: Cloning, expression, and characterization of Der f 7, an allergen of Dermatophagoides farinae from China. J Med Entomol. 2010, 47: 868-876. 10.1603/ME09180.View ArticlePubMedGoogle Scholar
  11. Cui YB, Cai HX, Li L, Zhou Y, Gao CX, Shi WH, Yu M: Cloning, sequence analysis and expression in E. coli of the group 3 allergen of Dermatophagoides farinae. Chin Med J (Engl). 2009, 122: 2657-2661.Google Scholar
  12. Cui Y, Peng J, Zhou P, Peng M, Qian S: Bioinformatics studies on the group 2 allergens of Dermatophagoides farinae from China. Asian Pac J Allergy Immunol. 2007, 25: 199-206.PubMedGoogle Scholar
  13. Cui Y: Immunoglobulin E-Binding Epitopes of Mite Allergens: From Characterization to Immunotherapy. Clin Rev Allergy Immunol. 2013, Epub ahead of print PMID 24218295Google Scholar
  14. Cui Y: Structural biology of mite allergens. Mol Biol Rep. 2013, 40: 681-686. 10.1007/s11033-012-2108-8.View ArticlePubMedGoogle Scholar
  15. Cui YB, Zhou Y, Shi W, Ma G, Yang L, Yungang W: Cloning, expression, and analysis of the group 2 allergen from Dermatophagoides farinae from China. Ann Braz Acad Sci. 2010, 82: 1-11. 10.1590/S0001-37652010000100001.View ArticleGoogle Scholar
  16. Cui YB, Gao CX, Zhou Y, Peng M, Lin Y, Peng JL: Phylogenetic analysis of house dust mites. Central European J Med. 2010, 5: 69-74. 10.2478/s11536-009-0106-6.Google Scholar
  17. Derewenda U, Li J, Derewenda Z, Dauter Z, Mueller GA, Rule GS, Benjamin DC: The crystal structure of a major dust mite allergen Der p 2, and its biological implications. J Mol Biol. 2002, 318: 189-197. 10.1016/S0022-2836(02)00027-X.View ArticlePubMedGoogle Scholar
  18. Wen TH: Non-specific mite infestation. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2005, 23: 374-378.PubMedGoogle Scholar
  19. Carter HF, Wedd G, D’Abrera VSE: The occurrence of mites (Acarina) in human sputum and their possible significance. Indian Med Gaz. 1944, 79: 163-168.Google Scholar
  20. Wilson HT: Tropical eosinophilia in East Africa. Br Med J. 1947, 1: 801-804. 10.1136/bmj.1.4509.801.PubMed CentralView ArticlePubMedGoogle Scholar
  21. Gao JM, Liu MH, Wei BX: A case of mites in patients with respiratory disease and observation on its life cycle and resistance. China Med J. 1956, 30: 1048-1052.Google Scholar
  22. Ryu JS, Ree HI, Min DY, Ahn MH: A human case of house dust mite Tarsonemus floricolus collected from sputum. Korean J Parasitol. 2003, 41: 171-173. 10.3347/kjp.2003.41.3.171.PubMed CentralView ArticlePubMedGoogle Scholar
  23. Martinez-Giron R, van Woerden HC, Ribas-Barcelo A: Experimental method for isolating and identifying dust mites from sputum in pulmonary acariasis. Exp Appl Acarol. 2007, 42: 55-59. 10.1007/s10493-007-9076-z.View ArticlePubMedGoogle Scholar
  24. van Woerden H: Dust mites living in human lungs–the cause of asthma?. Med Hypotheses. 2004, 63: 193-197. 10.1016/j.mehy.2004.02.047.View ArticlePubMedGoogle Scholar
  25. Li CP: An epidemiological survey of pulmonary acariasis in different occupations. Chin Occup Med. 2000, 27: 23-25.Google Scholar
  26. Zhao YQ, Zhen TM, Cheng P, Deng XL, Sun CH, Wang HW, Wang JX: Investigation and control of pulmonary acariasis pathogeny and its epidemic status. Chin J Hygienic Insecticides Equipments. 2007, 13: 435-438.Google Scholar
  27. Zhao YQ, Deng XL, Zhen TM, Cheng P, Sun CH, Gong MQ, Wang HW, Wen GX, Qou JX, Wang HF, Liu LJ: Pathogeny and epidemic status of pulmonary acariasis of Shandong Province, China. J Pathogen Biol. 2009, 4: 43-45.Google Scholar
  28. Zhang XL, Liu JM, Zhang MS, Xia LZ, Xia LL: A survey on etiology and epidemiology of human pulmonary acariasis in Shenzheng City. Chin J Parasitic Dis Control. 1993, 6: 236-237.Google Scholar
  29. Wang HH, Zhao FH, Wang DQ, Zhao GJ, Cheng WC: Epidemiological survey on pulmonary acariasis in different occupations. Chin J Parasit Dis Con. 2003, 16: 1-Google Scholar
  30. Liu YC, Guo YH: Progress in pulmonary acariasis. Chin J Parasitic Dis Control. 1997, 10: 307-308.Google Scholar
  31. Li CP, Chen XB: Progress in human pulmonary acariasis. Acta Academiae Medicinae Bengbu. 1986, 11: 56-60.Google Scholar
  32. Liu H, Ning YQ: 18 cases of pulmonary acariasis. Anthol Med. 2001, 2001: 4-Google Scholar
  33. Chen XB, Sun X, Hu S: Clinical features of human pulmonary acariasis and its treatment. Clin Med Sci. 1991, 11: 101-102.Google Scholar
  34. Li CP, Liang G: A summary of symptoms of human pulmonary acariasis and its treatment. J Qiqihar Med Coll. 1991, 12: 177-179.Google Scholar
  35. Chen XB, Zhang SF, Sun X, Hu SF, Yao M, Guo CL: Pathological observation of experimental pulmonary acariasis. J Bengbu Med Coll. 1990, 15: 179-182.Google Scholar
  36. Hinman E, Kampmeier RH: Intestinal acariasis due to Tyroguphas longior Gavais. Amer J Trop Med. 1934, 1934: 355-Google Scholar
  37. Martinez Maranon R, Hoffmann A: 3 cases of human intestinal mite infestation in the South of Veracruz. Rev Invest Salud Publica. 1976, 36: 187-201.PubMedGoogle Scholar
  38. Zhou HF: Carpoglyphus lactis and intestinal acariasis. Jiangsu Medical Journal. 1986, 12: 44-Google Scholar
  39. Li CP, Wang J: Intestinal acariasis in Anhui Province. World J Gastroenterol. 2000, 6: 597-600.PubMedGoogle Scholar
  40. Zhao XQ: A case of intestinal acariasis. Jiangsu Med J. 1984, 10: 29-Google Scholar
  41. Li CP, Wang KX, Xu GX, Li L, Wang J, Li ZD: An epidemiological survey of intestinal acariasis. Chines J Parasitol Parasitic Dis. 1996, 14: 63-65.Google Scholar
  42. Scala G: House-dust mite ingestion can induce allergic intestinal syndrome. Allergy. 1995, 50: 517-519. 10.1111/j.1398-9995.1995.tb01189.x.View ArticlePubMedGoogle Scholar
  43. Uga S, Kimura D, Kimura K, Margono SS: Intestinal parasitic infections in Bekasi district, West Java, Indonesia and a comparison of the infection rates determined by different techniques for fecal examination. Southeast Asian J Trop Med Public Health. 2002, 33: 462-467.PubMedGoogle Scholar
  44. Werneck JS, Carniato T, Gabriel A, Tufik S, Andrade SS: Mites in clinical stool specimens: potential misidentification as helminth eggs. Trans R Soc Trop Med Hyg. 2007, 101: 1154-1156. 10.1016/j.trstmh.2007.07.006.View ArticlePubMedGoogle Scholar
  45. Zhang RB, Huang Y, Li CP, Cui YB: Diagnosis of intestinal acariasis with avidin-biotin system enzyme-linked immunosorbent assay. World J Gastroenterol. 2004, 10: 1369-1371.PubMedGoogle Scholar
  46. Li CP: Treatment of human intestinal acariasis. World Chinese J Digestol. 2000, 8: 919-920.Google Scholar
  47. Erben AM, Rodriguez JL, McCullough J, Ownby DR: Anaphylaxis after ingestion of beignets contaminated with Dermatophagoides farinae. J Allergy Clin Immunol. 1993, 92: 846-849. 10.1016/0091-6749(93)90062-K.View ArticlePubMedGoogle Scholar
  48. Castillo S, Sanchez-Borges M, Capriles A, Suarez-Chacon R, Caballero F, Fernandez-Caldas E: Systemic anaphylaxis after ingestion of mite-contaminated flour. J Allergy Clin Immunol. 1995, 95: 304-Google Scholar
  49. Matsumoto T, Hisano T, Hamaguchi M, Miike T: Systemic anaphylaxis after eating storage-mite-contaminated food. Int Arch Allergy Immunol. 1996, 109: 197-200. 10.1159/000237220.View ArticlePubMedGoogle Scholar
  50. Sanchez-Borges M, Capriles-Hulett A, Fernandez-Caldas E, Suarez-Chacon R, Caballero F, Castillo S, Sotillo E: Mite-contaminated foods as a cause of anaphylaxis. J Allergy Clin Immunol. 1997, 99: 738-743. 10.1016/S0091-6749(97)80005-X.View ArticlePubMedGoogle Scholar
  51. Wen DC, Shyur SD, Ho CM, Chiang YC, Huang LH, Lin MT, Yang HC, Liang PH: Systemic anaphylaxis after the ingestion of pancake contaminated with the storage mite Blomia freemani. Ann Allergy Asthma Immunol. 2005, 95: 612-614. 10.1016/S1081-1206(10)61027-7.View ArticlePubMedGoogle Scholar
  52. Hara A, Fukahori S, Nakata H, Fukushima C, Matsuse H, Kohno S: A case of anaphylaxis caused by mite-contaminated Okonomi-yaki. Arerugi. 2006, 55: 574-577.PubMedGoogle Scholar
  53. Tay SY, Tham E, Yeo CT, Yi FC, Chen JY, Cheong N, Chua KY, Lee BW: Anaphylaxis following the ingestion of flour contaminated by house dust mites–a report of two cases from Singapore. Asian Pac J Allergy Immunol. 2008, 26: 165-170.PubMedGoogle Scholar
  54. Adachi YS, Itazawa T, Okabe Y, Higuchi O, Ito Y, Adachi Y: A case of mite-ingestion-associated exercise- induced anaphylaxis mimicking wheat-dependent exercise-induced anaphylaxis. Int Arch Allergy Immunol. 2013, 162: 181-183. 10.1159/000351778.View ArticlePubMedGoogle Scholar
  55. Takahashi K, Taniguchi M, Fukutomi Y, Sekiya K, Watai K, Mitsui C, Tanimoto H, Oshikata C, Tsuburai T, Tsurikisawa N, Minoguchi K, Nakajima H, Akiyama K: Oral mite anaphylaxis caused by mite-contaminated okonomiyaki/ pancake-mix in Japan: 8 case reports and a review of 28 reported cases. Allergol Int. 2014, 63: 51-56. 10.2332/allergolint.13-OA-0575.View ArticlePubMedGoogle Scholar
  56. Blanco C, Quiralte J, Castillo R, Delgado J, Arteaga C, Barber D, Carrillo T: Anaphylaxis after ingestion of wheat flour contaminated with mites. J Allergy Clin Immunol. 1997, 99: 308-313. 10.1016/S0091-6749(97)70047-2.View ArticlePubMedGoogle Scholar
  57. Iglesias-Souto J, Sanchez-Machin I, Iraola V, Poza P, Gonzalez R, Matheu V: Oral mite anaphylaxis by Thyreophagus entomophagus in a child: a case report. Clin Mol Allergy. 2009, 7: 10-10.1186/1476-7961-7-10.PubMed CentralView ArticlePubMedGoogle Scholar
  58. McCulloch AE: Acariasis of the Urinary Tract Caused by Histogaster. Can Med Assoc J. 1938, 38: 351-352.PubMed CentralPubMedGoogle Scholar
  59. Blazquez A, Bellvert F: Vesical infestation by mites. Arch Esp Urol. 1962, 16: 37-40.PubMedGoogle Scholar
  60. Fossati C: on a Case of the Presence of Acarids in Urinary Sediment. Acta Med Ital Med Trop Subtrop Gastroenterol. 1963, 18: 219-221.PubMedGoogle Scholar
  61. Pitariu T, Popescu IG, Banescu O: Acarids of pathological significance in urine. Rev Ig Bacteriol Virusol Parazitol Epidemiol Pneumoftiziol Bacteriol Virusol Parazitol Epidemiol. 1979, 24: 55-59.PubMedGoogle Scholar
  62. Dini LA, Frean JA: Clinical significance of mites in urine. J Clin Microbiol. 2005, 43: 6200-6201. 10.1128/JCM.43.12.6200-6201.2005.PubMed CentralView ArticlePubMedGoogle Scholar
  63. Li CP, Cui YB, Wang J, Yang QG, Tian Y: Acaroid mite, intestinal and urinary acariasis. World J Gastroenterol. 2003, 9: 874-877.PubMed CentralView ArticlePubMedGoogle Scholar
  64. Liu AQ, Jing WD, Li F: Infestation and multiplication of Acarids in the radical mastoidectomy cavity and the external auditory canal (a case report). J Bethune Medical University. 1985, 11: 97-99.Google Scholar
  65. Liao EC, Chang KC: Images in clinical medicine. Mites in the external auditory canal. N Engl J Med. 2012, 367: e19-10.1056/NEJMicm1010983.View ArticlePubMedGoogle Scholar
  66. Samung Y, Apiwathnasorn C, Wonglakorn S, Phayakkaphon A: The first reported case of mites, Suidasia pontifica, in the external ear canal of a Thai agricultural worker. J Trop Mol Parasitol. 2006, 29: 65-67.Google Scholar
  67. Chang DP, Hu XY, Yu NC: Two cases of vaginal acariasis. People’s Military Surgeon. 1998, 41: 117-Google Scholar

Copyright

© CUI; licensee BioMed Central Ltd. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Advertisement