Kamgang B, Ngoagouni C, Manirakiza A, Nakouné E, Paupy C, Kazanji M. Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic. PLoS Negl Trop Dis. 2013;7(12), e2590.
PubMed Central
PubMed
Google Scholar
Farajollahi A, Nelder MP. Changes in Aedes albopictus (Diptera: Culicidae) populations in New Jersey and implications for arbovirus transmission. J Med Entomol. 2009;46(5):1220–4.
PubMed
Google Scholar
Mitchell CJ. The role of Aedes albopictus as an arbovirus vector. Parassitologia. 1995;37:109–13.
CAS
PubMed
Google Scholar
Nelder M, Kesavaraju B, Farajollahi A, Healy S, Unlu I, Crepeau T, et al. Suppressing Aedes albopictus, an emerging vector of dengue and chikungunya viruses, by a novel combination of a monomolecular film and an insect-growth regulator. Am J Trop Med Hyg. 2010;82(5):831–7.
PubMed Central
PubMed
Google Scholar
World Health Organization (WHO). Global strategy for dengue prevention and control 2012–2020; 2013. http://apps.who.int/iris/bitstream/10665/75303/1/9789241504034eng.pdf.
World Health Organization (WHO). Dengue and severe dengue; 2012a. http://www.who.int/mediacentre/factsheets/fs117/en/.
Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: implications for public health practitioners. PLoS One. 2013;8(4), e60874.
PubMed Central
CAS
PubMed
Google Scholar
Effler PV, Pang L, Kitsutani P, Vorndam V, Nakata M, Ayers T, et al. Dengue fever, Hawaii, 2001–2002. Em Infect Dis. 2005;11:742–9.
Google Scholar
Rezza G. Aedes albopictus and the reemergence of dengue. BMC Public Health. 2012;12:72.
PubMed Central
PubMed
Google Scholar
Vega-Rua A, Zouache K, Caro V, Diancourt L, Delaunay P, Grandadam M, et al. High efficiency of temperate Aedes albopictus to transmit chikungunya and dengue viruses in the southeast of France. PLoS One. 2013;8(3), e59716.
PubMed Central
CAS
PubMed
Google Scholar
Dia I, Diagne CT, Ba Y, Diallo D, Konate L, Diallo M. Insecticide susceptibility of Aedes aegypti populations from Senegal and Cape Verde Archipelago. Parasit Vect. 2012;5:238.
CAS
Google Scholar
McReynolds M, Hellenthal DR: Environmental influences on mosquito adult and larvae abundance, University of Notre Dame Environmental Research Center; 2003. http://www3.nd.edu/~underc/east/education/documents/MMcReynolds2003EnvironmentalInfluencesonMosquitoAdultandLarvaeAbundance.pdf.
Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R. Defining the challenges and proposing new solutions for Aedes aegypti-borne disease prevention. PLoS Med. 2008;5:362–6.
Google Scholar
Thenmozhi V, Hiriyan JG, Tewari SC. Natural vertical transmission of dengue virus in Aedes albopictus (Diptera:culicidae) in Kerala, a southern Indian state. Jpn J Infect Dis. 2007;60:245–9.
PubMed
Google Scholar
Scholte EJ, Dijkstra E, Blok H, De Vries A, Takken W, Hofhuis A, et al. Accidental importation of the mosquito Aedes albopictus into the Netherlands: a survey of mosquito distribution and the presence of dengue virus. Med Vet Entomol. 2008;22(4):352–8.
PubMed
Google Scholar
Hawley WA. The biology of Aedes albopictus. J Am Mosq Contr Assoc (Suppl). 1988;1:1–40.
CAS
Google Scholar
Dieng H, Rajasaygar S, Ahmad AH, Md Rawi CS, Ahmad H, Satho T, et al. Indirect effects of cigarette butt waste on the dengue vector Aedes aegypti (Diptera: Culicidae). Acta Trop. 2014;130C:123–30.
Google Scholar
Dieng H, Boots M, Tuno N, Tsuda Y, Takagi M. A laboratory oviposition study in Aedes albopictus with reference to habitat size, leaf litter and habitat size-leaf litter interactions. Med Entomol Zool. 2003;54:43–50.
Google Scholar
Hoel DF, Obenauer PJ, Clark M, Smith R, Hughes TN, Larson RT, et al. Efficacy of ovitrap colors and patterns for attracting Aedes albopictus at suburban field sites in north-central Florida. J Am Mosq Contr Assoc. 2011;27(3):245–51.
Google Scholar
Bentley MD, Day JF. Chemical ecology and behavioral aspects of mosquito oviposition. Annu Rev Entomol. 1989;34:401–21.
CAS
PubMed
Google Scholar
Wong J, Stoddard ST, Astete H, Morrison AC, Scott TW. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Neglect Trop Dis. 2011;5, e1015.
Google Scholar
Wong J, Astete H, Morrison AC, Scott TW. Sampling considerations for designing Aedes aegypti (Diptera: Culicidae) oviposition studies in Iquitos, Peru: substrate preference, diurnal periodicity, and gonotrophic cycle length. J Med Entomol. 2011;48:45–52.
PubMed Central
PubMed
Google Scholar
Himeidan YE, Temu EA, El Rayah EA, Munga S, Kweka EJ. Chemical cues for malaria vectors oviposition site selection: challenges and opportunities. J Insects. 2013;2013(Article ID 685182):9. doi:10.1155/2013/685182.
Google Scholar
Perich MJ, Kardec A, Braga IA, Portal IF, Burge R, Zeichner BC, et al. Field evaluation of a lethal ovitrap against dengue vectors in Brazil. Med Vet Entomol. 2003;17:205–10.
CAS
PubMed
Google Scholar
Williams CR, Long SA, Russell RC, Ritchie SA. Field efficacy of the BG-Sentinel compared with CDC backpack aspirators and CO2 baited EVS traps for collection of adult Aedes aegypti in Cairns, Queensland, Australia. J Am Mosq Contr Assoc. 2006;22:296–300.
Google Scholar
Zeichner BC, Perich MJ. Laboratory testing of a lethal ovitrap for Aedes aegypti. Med Vet Entomol. 1999;13:234–8.
CAS
PubMed
Google Scholar
Reiskind MH, Zarrabi AA. Water surface area and depth determine oviposition choice in Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2012;49:71–6.
PubMed
Google Scholar
Williams CR, Long SA, Webb CE, Bitzhenner M, Geier M, Russel RC, et al. Aedes aegypti population sampling using BG-Sentinel traps in north Queensland, Australia: statistical considerations for trap deployment and sampling strategy. J Med Entomol. 2007;44:345–50.
PubMed
Google Scholar
Fish D, Carpenter SR. Leaf litter and larval mosquito dynamics in tree-hole ecosystems. Ecology. 1982;63:283–8.
Google Scholar
Kaufman MG, Walker ED, Smith TW, Merritt RW, Klug MJ. The effects of larval mosquitoes (Aedes triseriatus) and stemflow on microbial community dynamics in container habitats. Appl Environ Microbiol. 1999;65:2661–73.
PubMed Central
CAS
PubMed
Google Scholar
Dieng H, Mwandawiro C, Boots M, Morales RM, Satho T, Tuno N, et al. Leaf litter decay process and the growth performance of Aedes albopictus larvae. J Vector Ecol. 2002;27:31–8.
PubMed
Google Scholar
Dieng H, Saifur R, Abu Hassan A, Rawi CS, Boots M, Satho T, et al. Discarded cigarette butts attract females and kill the progeny of Aedes albopictus. J Am Mosq Contr Assoc. 2011;27:263–71.
Google Scholar
Farah A. Coffee as a speciality and functional beverage. In: Paquin P, editor. Speciality and functional beverages. Cambrige, NY: 395; 2009. p. 370.
Sunarharum W, Willians D, Smyth H. Complexity of coffee flavor: a compositional and sensory perspective. Food Res Intl. 2014;62:315–25.
CAS
Google Scholar
Speer K, Kölling-Speer I. The lipid fraction of the coffee bean. Braz J Plant Physiol. 2006;18(1):201–16.
CAS
Google Scholar
Topik S. Coffee as a social drug. Cult Critiq. 2009;71:315–25.
Google Scholar
Mussatto SI, Carneiro LM, Silva JPA, Roberto IC, Teixeira JA. A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohyd Polymers. 2011;83:368–74.
CAS
Google Scholar
Donovan L. Word of mouth: the espresso mushroom company; 2013. http://www.telegraph.co.uk/foodanddrink/10333559/Word-of-mouth-The-Espresso-Mushroom-Company.html.
American Chemical Society (ACS): New biorefinery finds treasure in Starbucks’ spent coffee grounds and stale bakery goods; 2012. http://www.acs.org/content/acs/en/pressroom/newsreleases/2012/august/new-biorefinery-finds-treasure-in-starbucks-spent-coffee-grounds-and-stale-bakery-goods.html.
United States Department of Agriculture (USDA): Coffee: world markets and trade; 2014. http://apps.fas.usda.gov/psdonline/circulars/coffee.pdf.
Clarke RJ. Coffee Volume 1 Chemistry. New York: Springer; 2013.
Google Scholar
Kölling-Speer I, Speer K. 16-O-methylkahweol in Robusta coffee. In: 19th International Colloquium on the Chemistry of Coffee. Paris: ASIC; 2001.
Google Scholar
Oestreich-Janzen S. Chemistry of Coffee: the science of coffee, Illy; 2010. http://www2.illy.com/wps/wcm/connect/us/illy/.
Farah A. Coffee constituents. In: Chu YF, editor. Coffee: Emerging Health Effects and Disease Prevention. West Sussex: John Wiley & Sons; 2012. p. 21–58.
Google Scholar
Hearne SA. Harvest of unknowns: pesticide contamination in imported foods. New York: Natural Resources Defense Council; 1984. p. 16–7.
Google Scholar
Farah A, Donangelo CM. Phenolic compounds in coffee. Brazilian J Plant Physiol. 2006;18(1):23–36.
CAS
Google Scholar
Farah A, Monteiro MC, Calado V, Franca AS, Trugo LC. Correlation between cup quality and chemical attributes of Brazilian coffee. Food Chem. 2006;98(2):373–80.
CAS
Google Scholar
Flament I. Coffee flavor chemistry. West Sussex: John Wiley & Sons, Ltd; 2002.
Google Scholar
Foelix RF. Biology of spiders. New York: Oxford University Press; 2010.
Google Scholar
Miles PW, Oertli JJ. The significance of antioxidants in the aphid-plant interaction: the redox hypothesis. Entomol Exp Appl. 1993;1993(67):275–83.
Google Scholar
Milanez S. Adverse health effects of caffeine: review and analysis of recent human and animal research; 2011 http://www.iom.edu/~/media/Files/Activity%20Files/Nutrition/PotentialEffectsofCaffeine/caffeineORNLreport.pdf.
Nehlig A, Debry G. Potential teratogenic and neurodevelopmental consequences of coffee and caffeine exposure: a review on human and animal data. Neurotoxicol Teratol. 1994;16:531–43.
CAS
PubMed
Google Scholar
Bressani R, Elias LG, Estrada VE, Jarquin R. Valor nutritivo de la pulpa de café en monogástricos. Asoc Latinoamer Prod Anim Mem. 1971;6:142.
Google Scholar
Nascimento CGH, Andrade IF, Baiao AAF, Martins AE, Baiao EAM, Perez JRO, et al. The use of coffee hulls as a supplement for Nelore crossbred steers kept on a Brachiaria decumbens, Stapf pasture in the dry season of the year. Ciencia e Agrotecnologia. 2003;27(Especial):1662–71.
Google Scholar
Weathersbee PS, Ax RL, Lodge JR. Caffeine-mediated changes of sex ration in Chinese hamsters, Cricetulus griseus. J Reprod Fertil. 1975;43:141–3.
CAS
PubMed
Google Scholar
Smith SE, McElhatton PR, Sullivan FM. Effects of administering caffeine to pregnant rats either as a single daily dose or as divided doses 4 times a day. Food Chem Toxicol. 1987;25:125–33.
CAS
PubMed
Google Scholar
Jaramillo J, Borgemeister C, Baker P. Coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): searching for sustainable control strategies. Bull Entomol Res. 2006;96:223–33.
CAS
PubMed
Google Scholar
Kosugi A, Nagao M, Suwa Y, Wakabayashi K, Sugimura T. Roasting coffee beans produces compounds that induce prophage lambda in E. coli and are mutagenic in E. coli and S. typhimurium. Mutat Res. 1983;116:179–84.
CAS
PubMed
Google Scholar
Organic Information Services. Health benefits of tea tree essential oil; 2014. https://www.organicfacts.net/health-benefits/essential-oils/health-benefits-of-tea-tree-essential-oil.html.
Nathanson JA. Caffeine and related methylxanthine possible naturally occurring pesticides. Science. 1984;226:184–7.
CAS
PubMed
Google Scholar
Wink M. The role of quinolizidine alkaloids in plant-insect interactions. In: Bernays E, editor. Insect-Plant Interaction. Boca Raton: CRC Press; 1992.
Google Scholar
Pedronel A, Casanova H, Ortiz C, Henao B, Pelaez C. Insecticidal Activity of caffeine aqueous solutions and caffeine oleate emulsions against Drosophila melanogaster and Hypothenemus hampei. J Agri Food Chem. 2007;55(17):6918–22.
Google Scholar
Laranja AT, Manzatto AJ, Campos Bicudo HEMd. Effects of caffeine and used coffee grounds on biological features of Aedes aegypti (Diptera: Culicidae) and their possible use in alternative control. Genetic. Mol Biol. 2003;26(4):419–29.
CAS
Google Scholar
Itoyama MM, Bicudo HEMC. Effects of caffeine on fecundity, egg laying capacity, development time and longevity in Drosophila prosaltans. Rev Bras Genet. 1992;15:303–21.
Google Scholar
Itoyama MM, Bicudo HEMC. Effects of caffeine on mitotic index in Drosophila prosaltans (Diptera). Rev Bras Genet. 1997;20:655–8.
CAS
Google Scholar
Derraik JGB, Slaney D. The toxicity of used coffee grounds to the larvae of Ochlerotatus (Finlaya) notoscriptus (Skuse) (Diptera: Culicidae). Ann Med Entomol. 2005;14:14–24.
Google Scholar
UK Chemicals Regulation Directorate. Insecticide mixtures: justification for use and implications for resistance management in the United Kingdom. Efficacy Guideline 607; 2010. http://www.pesticides.gov.uk/Resources/CRD/Migrated-Resources/Documents/G/g607.pdf.
Cheah SX, Tay JW, Chan LK, Jaal Z. Larvicidal, oviposition, and ovicidal effects of Artemisia annua (Asterales: Asteraceae) against Aedes aegypti, Anopheles sinensis, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2013;112:3275–82.
PubMed
Google Scholar
Juliano SA, Gravel ME. Predation and the evolution of prey behavior: an experiment with tree hole mosquitoes. Behav Ecol. 2002;13:301–11.
Google Scholar
Yee DA, Kesavaraju B, Juliano SA. Larval feeding behavior of three co-occurring species of container mosquitoes. J Vector Ecol. 2004;29:315–22.
PubMed Central
PubMed
Google Scholar
Dieng H, Hassan RB, Ghani IA, Abang F, Satho T, et al. Occurrence of a mosquito vector in bird houses: Developmental consequences and potential epidemiological implications. Acta Trop. 2015;145:68–78.
PubMed
Google Scholar
Yeap HL, Mee P, Walker T, Weeks AR, O’Neill SL, Johnson P, et al. Dynamics of the “Popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics. 2011;187(2):583–95.
PubMed Central
CAS
PubMed
Google Scholar
Systat Software Inc. Systat 11 data. Systat for windows: statistics. Richmond CA, USA: Systat Software Inc; 2004.
Google Scholar
Trimble RM. Laboratory observations on oviposition by the predacious tree-hole mosquito Toxorhynchites rutilus septentrionalis (Diptera: Culicidae). Can J Zool. 1979;57:1104–8.
Google Scholar
Reyes-Villanueva F, Juarez-Eguia M, Flores-Leal A. Effects of sublethal dosages of Abate upon adult fecundity and longevity of Aedes aegypti. J Am Mosq Contr Assoc. 1990;6:739–41.
CAS
Google Scholar
Petranka JW, Fakhoury K. Evidence of a chemically mediated avoidance response of ovipositing insects to bluegills and green frog tadpoles. Copeia. 1991;1:234–9.
Google Scholar
Santos E, Correia J, Muniz L, Meiado M, Albuquerque C. Oviposition activity of Aedes aegypti L. (Diptera: Culicidae) in response to different organic infusions. Neotrop Entomol. 2010;39:299–302.
PubMed
Google Scholar
Li J, Deng T, Li H, Chen L, Mo J. Effect of water color and chemical compounds on the oviposition behavior of gravid Culex pipiens pallens females under laboratory conditions. J Agri Urban Entomol. 2009;26:23–30.
Google Scholar
Livdahl T, Koenekoop R, Futterweit SG. The complex hatching response of Aedes eggs to larval density. Ecol Entomol. 1984;9:437–42.
Google Scholar
Byttebier B, De Majo MS, Fischer S. Low temperature hatching response of Aedes aegypti eggs: effects of hatching media and storage conditions. J Med Entomol. 2014;51(1):97–103.
CAS
PubMed
Google Scholar
Hardwood RF, Horsfall WR. Development, structure, and function of covering of eggs of floodwater mosquitoes. III Functions of coverings Ann Entomol Soc Am. 1959;52:113–6.
Google Scholar
Saifur RGM, Dieng H, Hassan AA, Satho T, Miake F, Boots M, et al. The effects of moisture on ovipositional responses and larval eclosion of Aedes albopictus. J Am Mosq Contr Assoc. 2010;26(4):373–80.
Google Scholar
Strickman D. Stimuli affecting selection of oviposition sites by Aedes vexans (Diptera: Culicidae): moisture. Mosq News. 1980;40:236–45.
Google Scholar
Dieng H, Boots M, Tamori N, Higashihara J, Okada T, Kato K, et al. Some technical and ecological determinants of hatchability in Aedes albopictus, a potential candidate for transposon-mediated transgenesis. J Am Mosq Contr Assoc. 2006;22:382–9.
Google Scholar
Horsfall WR. Eggs of floodwater mosquitoes (Diptera: Culicidae). III. Conditioning and hatching of Aedes vexans. Ann Entomol Soc Am. 1956;49:66–71.
Google Scholar
Rosay B. Expansion of eggs of Culex tarsalis Coquillett and Aedes nigromaculis (Ludlow) (Diptera: Culicidae). Mosq News. 1959;19:270–3.
Google Scholar
Downs WG. Growth changes of anopheline eggs in water and in saline solution. J Nat Malar Soc. 1951;10:17–21.
CAS
Google Scholar
Gander R. Experimented line oekologische Unter such linger iiber das Schliipfvermfjgen der Larven von Aedes aegypti L. Suisse Zool. 1951;58:215–78.
Google Scholar
Campos RE. Long-term storage and viability of Ochlerotatus albifasciatus eggs (Diptera: Culicidae). Mem Inst Oswaldo Cruz. 2008;103:115–7.
PubMed
Google Scholar
Biemont JC, Chauvin G, Hamon C. Ultrastructure and resistance to water loss in eggs of Acanthoscelides obtectus Say (Coleoptera: Bruchidae). J Insect Physiol. 1981;27:667–79.
Google Scholar
Schlaeger DA, Fuchs MS. Dopa decarboxylase activity in Aedes aegypti: a preadult profile and its subsequent correlation with ovarian development. Dev Biol. 1974;38:209–19.
CAS
PubMed
Google Scholar
Karlson P, Sekeris CE. N Acetyldopamine as sclerotizing agent of the insect cuticle. Nature. 1962;95:183–4.
Google Scholar
Sugumaran M. Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res. 2002;15:2–9.
CAS
PubMed
Google Scholar
Kim SR, Yao R, Han Q, Christensen BM, Li J. Identification and molecular characterization of a prophenoloxidase involved in Aedes aegypti chorion melanization. Insect Mol Biol. 2005;14:185–94.
PubMed Central
CAS
PubMed
Google Scholar
Monnerat AT, Soares MJ, Lima JBJ, Rosa-Freitas MG, Valle D. Anopheles albitarsis eggs: ultrastructural analysis of chorion layers after permeabilization. J Insect Physiol. 1999;45:915–22.
CAS
PubMed
Google Scholar
Li J, Hodgeman BA, Christensen BM. Involvement of peroxidase in chorion hardening in Aedes aegypti. Insect Biochem Mol Biol. 1996;26:309–17.
CAS
PubMed
Google Scholar
Xue RD, Ali A, Barnard DR. Effects of forced egg-retention on adult survival and reproduction following application of DEET as an oviposition deterrent. J Vector Ecol. 2005;30:45–8.
PubMed
Google Scholar
Johnson BJ, Fonseca DM. The effects of forced-egg retention on the blood-feeding behavior and reproductive potential of Culex pipiens (Diptera: Culicidae). J Insect Physiol. 2014;66:53–8.
CAS
PubMed
Google Scholar
Chadee DD. Effects of forced egg-retention on the oviposition patterns of female Aedes aegypti (Diptera: Culicidae). Bull Entomol Res. 1997;87:649–51.
Google Scholar
Bar-Zeev M, Ben-Tamar D. The effectiveness of repellents on cloth as determined by oviposition of Aedes aegypti (Diptera: Culicidae). Mosq News. 1968;28:396–403.
CAS
Google Scholar
Von Windeguth DL, Eliason DA, Schoof HF. The efficacy of carbaryl, propoxur, Abate and methoxychlor as larvicides against field infestations of Aedes aegypti. Mosq News. 1971;31:91–5.
Google Scholar
Verma KVS. Deterrent effect of synthetic pyrethroids on the oviposition of mosquitoes. Curr Sci. 1986;55:373–5.
CAS
Google Scholar
Canyon DV. Irritancy and repellency of Aedes aegypti (Diptera: Culicidae) to insecticides and implications for vector control operations. In: Canyon DV, Speare RS, editors. Rural and Remote Environmental Health I. Townsville: The Australasian College of Tropical Medicine; 2001.
Google Scholar
Xue RD, Barnard DR, Ali A. Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito Aedes albopictus. Med Vet Entomol. 2001;15:126–31.
CAS
PubMed
Google Scholar
McDonald LJ, Lu LC. Viability of mosquito eggs produced by female mosquitoes denied ovipositing sites. J Med Entomol. 1972;32:463–6.
Google Scholar
Ames BN, Gold LS. The causes and prevention of cancer: the role of environment. Biotherapy. 1998;11:205–20.
CAS
PubMed
Google Scholar
International Coffee Traders: Coffee chemistry; 2014. http://www.internationalcoffeetraders.ca/page4.html.
Mallikarjuna N, Kranthi KR, Jadhav DR, Kranthi S, Chandra S. Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. J Appl Entomol. 2004;128:321–8.
CAS
Google Scholar
Jassbi AR. Secondary metabolites as stimulants and antifeedants of Salix integra for the leaf beetle Plagiodera versicolora. Z Naturforsch [C]. 2003;58:573–9.
CAS
Google Scholar
Dowd PF, Vega FE. Enzymatic oxidation products of allelochemicals as a basis for resistance against insects: effects on the corn leafhopper Dalbulus maidis. Nat Toxins. 1996;4:85–91.
CAS
PubMed
Google Scholar
American Institute for Cancer Research: Foods that fight cancer; 2014. http://www.aicr.org/foods-that-fight-cancer/coffee.html.
Cheng B, Liu X, Gong H, Huang L, Chen H, Zhang X, et al. Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J Agri Food Chem. 2011;59(24):13147–55.
CAS
Google Scholar
Bolton S. Caffeine: psychological effects, use and abuse. Orthomol Psych. 1981;10(3):202–11.
CAS
Google Scholar
Wright GA, Baker DD, Palmer MJ, Stabler D, Mustard JA, Power EF, et al. Caffeine in floral nectar enhances a pollinator’s memory of reward. Science. 2013;339:1202–4.
CAS
PubMed
Google Scholar
Newton G: A memory of mosquitoes; 2002. http://malaria.wellcome.ac.uk/doc_WTD023866.html.
Felsenberg J, Gehring KB, Antemann V, Eisenhardt D. Behavioural pharmacology in classical conditioning of the proboscis extension response in honeybees (Apis mellifera). J Vis Exp. 2011;47, e2282.
Google Scholar
Gilbert RM, Marshman JA, Schwieder M, Berg R, Tech D. Caffeine content of beverages as consumed. Can Med Assoc. 1976;114:205–8.
CAS
Google Scholar
Bohbot J, Pitts RJ, Kwon HW, Rutzler M, Robertson HM, Zwiebel LJ. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol Biol. 2007;16:525–37.
PubMed Central
CAS
PubMed
Google Scholar
Zacharuk RY, Yin LR-S, Blue SG. Fine structure of the antenna and its sensory cone in the larvae of Aedes aegypti (1.). J Morphol. 1971;135:273–98.
CAS
PubMed
Google Scholar
International Coffee Organization. Annual review 2012/13; 2013. http://www.ico.org/about_coffee.asp?section=About_Coffee#sthash.a868QzgM.dpuf
Liu K, Price GW. Evaluation of three composting systems for the management of spent coffee grounds. Bioresource Technol. 2011;100(2):79667–974.
Google Scholar
Moore MT, Greenway SL, Farris JL. Assessing caffeine as an emerging environmental concern using conventional approaches. Arch Environ Contam Toxicol. 2008;54:31–5.
CAS
PubMed
Google Scholar
Mailbes JB, Young D, London SN. Cytogenetic effects of caffeine during in vivo mouse oocyte maturation. Mutagenesis. 1996;11(4):396–9.
Google Scholar
Silva CG, Métin C, Fazeli W, Machado NJ, Darmopil S, Launay PS, et al. Adenosine receptor antagonists including caffeine alter fetal brain development in mice. Sci Translat Med. 2013;5(197):197ra104. doi:10.1126/scitranslmed.3006258.
Google Scholar
Helmenstine AM. Caffeine chemistry. What is caffeine and how does it work? 2014; http://chemistry.about.com/od/moleculescompounds/a/caffeine.htm.
Campbell TW, Bartley EE, Bechtle RM, Dayton AD. Coffee grounds. I. Effects of coffee grounds on ration digestibility and diuresis in cattle, on in vitro rumen fermentation, and on rat growth. J Dairy Sci. 1976;59(8):1452–60.
CAS
PubMed
Google Scholar
Environmental Leader: Starbucks to recycle coffee grounds into bio-plastics; 2012. http://www.environmentalleader.com/2012/08/21/starbucks-to-recycle-coffee-grounds-into-bio-plastics/.
New York Daily News. Starbucks turns coffee grinds and old muffins into laundry detergent; 2012. http://www.nydailynews.com/life-style/eats/starbucks-turns-coffee-grinds-old-muffins-laundry-detergent-article-1.1145387.
PlanetArk: Coffee grounds; 2010. http://businessrecycling.com.au/recycle/coffee-grounds.
Howarth RW. A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Sci Eng. 2014;2(2):47–60.
CAS
Google Scholar
World Coffee Leader Forum: Global Coffee Industry Trend and Challenge of Asian Market; 2013. http://www.wclforum.org/download/WCLF2014E-Brochure_Web.pdf.