Kingsolver JG, Woods HA, Buckley LB, Potter KA, MacLean HJ, Higgins JK. Complex life cycles and the responses of insects to climate change. Int Comp Biol. 2011;51:719–32.
Article
Google Scholar
Green BS, McCormick MI. Maternal and paternal influences determine size, growth and performance in tropical reef fish larvae. Mar Ecol Prog Ser. 2005;289:263–72.
Article
Google Scholar
McCormick MI, Gagliano M. Carry-over affects-the importance of a good start. In: Proc 11th Int Coral Reef Sym Ses. 2008; vol 10, p. 305–10.
Kingsolver JG, Huey RB. Size, temperature, and fitness: three rules. Evol Ecol Res. 2008;10:251–68.
Google Scholar
Steinwascher K. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti. Environ Entomol. 1982;11:150–3.
Article
Google Scholar
Day JF, Ramsey AM, Zhang J-T. Environmentally mediated seasonal variation in mosquito body size. Environ Entomol. 1990;19:469–73.
Article
Google Scholar
Harrison Blount JD, Inger R, Norris DR, Bearhop S. Carry-over effects as drivers of fitness differences in animals. J Anim Ecol. 2011;80:4–18.
Article
Google Scholar
Parker BM. Hatchability of eggs of Aedes taeniorhynchus (Diptera: Culicidae): effects of different temperatures and photoperiods during embryogenesis. Ann Entomol Soc Am. 1986;79:925–30.
Article
Google Scholar
Rueda LM, Patel KJ, Axtell RC, Stinner RE. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1990;27:892–8.
Article
CAS
Google Scholar
Crans WJ, Sprenger DA, Mahmod F. The blood-feeding habits of Aedes sollicitans (Walker) in relation to Eastern Equine Encephalitis virus in coastal areas of New Jersey, II. Results of experiments with caged mosquitoes and the effects of temperature and physiological age on host selection. J Vect Ecol. 1996;21:1–5.
Google Scholar
Hurlbut HS. The effect of environmental temperature upon the transmission of St. Louis encephalitis virus by Culex pipiens quinquefasciatus. J Med Entomol. 1973;10:1–12.
Article
CAS
Google Scholar
Barreaux Stone CM, Barreaux P, Koella JC. The relationship between size and longevity of the malaria vector Anopheles gambiae (s.s.) depends on the larval environment. Parasit Vectors. 2018;11:485.
Article
Google Scholar
Adelman ZN, Anderson MA, Wiley MR, Murreddu MG, Samuel GH, Morazzani EM, Myles KM. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl Trop Dis. 2013;7:e2239.
Article
CAS
Google Scholar
Mordecai EA, Paaijmans KP, Johnson LR, Bazler C, Ben-Horin T, de Moor E, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett. 2013;16:22–30.
Article
Google Scholar
Padmanabha H, Bolker B, Lord CC, Rubio C, Lounibos LP. Food availability alters the effects of larval temperature on Aedes aegypti growth. J Med Entomol. 2011;48:974–84.
Article
CAS
Google Scholar
Yee DA, Ezeakacha NF, Abbott K. The interactive effects of photoperiod and future climate change may have negative consequences for a wide-spread invasive insect. Oikos. 2016;126:40–51.
Article
Google Scholar
Moller-Jacobs LL, Murdock CC, Thomas MB. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasit Vectors. 2014;7:593.
Article
Google Scholar
Sibly RM, Atkinson D. How rearing temperature affects optimal adult size in ectotherms. Funct Ecol. 1994;8:486–93.
Article
Google Scholar
Telang A, Qayum AA, Parker A, Sacchetta BR, Byrnes GR. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Med Vet Entomol. 2012;26:271–81.
Article
CAS
Google Scholar
Reiskind MH, Lounibos LP. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med Vet Entomol. 2009;23:62–8.
Article
CAS
Google Scholar
Muturi EJ, Allan BF, Ricci J. Influence of leaf detritus type on production and longevity of container-breeding mosquitoes. Environ Entomol. 2012;41:1062–8.
Article
Google Scholar
Alto BW, Bettinardi D. Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. Am J Trop Med Hyg. 2013;88:497–505.
Article
Google Scholar
Kay BH, Fanning ID, Mottram P. Rearing temperature influences flavivirus vector competence of mosquitoes. Med Vet Entomol. 1989;3:415–22.
Article
CAS
Google Scholar
Brubaker JF, Turell MJ. Effect of environmental temperature on the susceptibility of Culex pipiens (Diptera: Culicidae) to Rift Valley Fever virus. J Med Entomol. 1998;35:918–21.
Article
CAS
Google Scholar
Christiansen-Jucht C, Parham PE, Saddler A, Koella JC, Basáñez MG. Temperature during larval development and adult maintenance influences the survival of Anopheles gambiae s.s. Parasit Vectors. 2014;7:489.
Article
Google Scholar
Westby KM, Juliano SA. Simulated seasonal photoperiods and fluctuating temperatures have limited effects on blood feeding and life history in Aedes triseriatus (Diptera: Culicidae). J Med Entomol. 2015;52:896–906.
Article
CAS
Google Scholar
Lounibos LP. Invasions by insect vectors of human disease. Annu Rev Entomol. 2002;47:233–66.
Article
CAS
Google Scholar
Nawrocki SJ, Hawley WA. Estimation of the northern limits of distribution of Aedes albopictus in North America. J Am Mosq Cont Assoc. 1987;3:314–7.
CAS
Google Scholar
Alto BW, Juliano SA. Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. J Med Entomol. 2001;38:548–56.
Article
CAS
Google Scholar
Atkinson D. Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. J Ther Biol. 1995;20:61–74.
Article
Google Scholar
Scheiner SM. MANOVA. Multiple response variables and multi species interactions. In: Scheiner SM, Gurevitch J, editors. Design and analysis of ecological experiments. 2nd ed. New York: Oxford University Press; 2001. p. 99–133.
Google Scholar
Tukey JW. The philosophy of multiple comparisons. Stat Sci. 1991;6:100–16.
Article
Google Scholar
SAS Institute Inc. Using JMP 10. Cary, NC: SAS Institute Inc; 2012.
Google Scholar
Moore CG, Fisher BR. Competition in mosquitoes. Density and species ratio effects on growth, mortality, fecundity, and production of growth retardant. Ann Entomol Soc Am. 1969;62:1325–31.
Article
CAS
Google Scholar
Gilles JR, Lees RS, Soliban SM, Benedict MQ. Density-dependent effects in experimental larval populations of Anopheles arabiensis (Diptera: Culicidae) can be negative, neutral, or overcompensatory depending on density and diet levels. J Med Entomol. 2001;48:296–304.
Article
Google Scholar
Kleckner CA, Hawley WA, Bradshaw WE, Holzapfel CM, Fisher IJ. Protandry in Aedes sierrensis: the significance of temporal variation in female fecundity. Ecology. 1995;76:1242–50.
Article
Google Scholar
Yee DA, Juliano SA, Vamosi SM. Seasonal photoperiods alter developmental time and mass of an invasive mosquito, Aedes albopictus (Diptera: Culicidae), across its north-south range in the United States. J Med Entomol. 2012;49:825–32.
Article
CAS
Google Scholar
Heuvel MJ. The effect of rearing temperature on the wing length, thorax length, leg length and ovariole number of the adult mosquito, Aedes aegypti (L.). Trans R Entomol Soc Lon. 1963;115:197–216.
Article
Google Scholar
Brust RA. Weight and development time of different stadia of mosquitoes reared at various constant temperatures. Can Entomol. 1967;99:986–93.
Article
Google Scholar
Lyimo EO, Takken W, Koella JC. Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of Anopheles gambiae. Entomol Exp Appl. 1992;63:265–71.
Article
Google Scholar
Briegel H, Timmermann SE. Aedes albopictus (Diptera: Culicidae): physiological aspects of development and reproduction. J Med Entomol. 2001;38:566–71.
Article
CAS
Google Scholar
Ragland GJ, Kingsolver JG. The effect of fluctuating temperatures on ectotherm life-history traits: comparisons among geographic populations of Wyeomyia smithii. Evol Ecol Res. 2008;10:29–44.
Google Scholar
Westbrook CJ, Resikind MH, Rsko KN, Greene KE, Lounibos LP. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus. Vector Borne Zoonotic Dis. 2010;10:241–7.
Article
Google Scholar
Delatte H, Gimonneau G, Triboire A, Fontenille D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol. 2009;46:33–41.
Article
CAS
Google Scholar
Muturi EJ, Lampman L, Costanzo C, Alto BW. Effect of temperature and insecticide stress on life-history traits of Culex restuans and Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2011;48:243–50.
Article
CAS
Google Scholar
Yoshioka MJ, Couret J, Kim F, McMillan J, Burkot TR, Dotson EM, Kitron U, et al. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae). Parasit Vectors. 2012;5:225.
Article
Google Scholar
Armbruster P. Photoperiodic diapause and the establishment of Aedes albopictus (Diptera: Culicidae) in North America. J Med Entomol. 2016;53:1013–23.
Article
Google Scholar
Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS One. 2013;8:e58824.
Article
CAS
Google Scholar
Feder ME. Organismal, ecological, and evolutionary aspects of heat-shock proteins and the stress response: established conclusions and unresolved issues. Am Zool. 1999;39:857–64.
Article
Google Scholar
Rinehart JP, Hayward SAL, Elnitsky MA, Sandro LH, Lee RE Jr, Denlinger DL, et al. Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proc Natl Acad Sci USA. 2006;103:14223–7.
Article
CAS
Google Scholar
Hawley WA. The effect of larval density on longevity of a mosquito, Aedes sierrensis: epidemiological consequences. J Anim Ecol. 1985;54:955–64.
Article
Google Scholar
Nasci RS. Relationship between adult mosquito (Diptera: Culicidae) body size and parity in field populations. Environ Entomol. 1986;15:874–6.
Article
Google Scholar
Hawley WA. The biology of Aedes albopictus. J Am Mosq Control Assoc Suppl. 1988;1:1–39.
CAS
PubMed
Google Scholar
Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA. 2010;107:15135–9.
Article
CAS
Google Scholar
Lambrechts L, Paaijmans KP, Ransiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci USA. 2011;108:7460–5.
Article
CAS
Google Scholar
Bradshaw WE. Thermoperiodism and the thermal environment of the pitcher-plant mosquito, Wyeomyia smithii. Oecologia. 1980;46:13–7.
Article
Google Scholar
Murdock CC, Paaijmans KP, Cox-Foster D, Read AF, Thomas MB. Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nat Rev Microbiol. 2012;10:869–76.
Article
CAS
Google Scholar
Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, Thomas MB. Complex effects of temperature on mosquito immune function. Proc Biol Sci. 2012;22:3357–66.
Article
Google Scholar
Murdock CC, Moller-Jacobs LL, Thomas MB. Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proc Biol Sci. 2013;280:2013–30.
Google Scholar
Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR. Impacts of climate warming on terrestrial ecotherms across latitude. Proc Natl Acad Sci USA. 2008;105:6668–72.
Article
CAS
Google Scholar
McCauley SJ, Hammond JI, Mabry KE. Simulated climate change increases larval mortality, alters phenology, and affects flight morphology of a dragonfly. Ecosphere. 2018;9:e02151.
Article
Google Scholar