Rosenberg R. Vital signs: trends in reported vectorborne disease cases—United States and Territories, 2004–2016. MMWR. 2018;67:496–501. https://www.cdc.gov/mmwr/volumes/67/wr/mm6717e1.htm. Accessed 22 Oct 2018.
Article
PubMed
PubMed Central
Google Scholar
Sprong H, Azagi T, Hoornstra D, Nijhof AM, Knorr S, Baarsma ME, et al. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasites Vectors. 2018;11:145.
Article
PubMed
PubMed Central
Google Scholar
European Parliament. Parliament calls for “alarming” spread of Lyme disease to be tackled. 2018. http://www.europarl.europa.eu/news/en/press-room/20181106IPR18328/parliament-calls-for-alarming-spread-of-lyme-disease-to-be-tackled. Accessed 22 Oct 2018.
Paules CI, Marston HD, Bloom ME, Fauci AS. Tickborne diseases—confronting a growing threat. N Engl J Med. 2018;379:701–3.
Article
PubMed
Google Scholar
Lehrer AT, Holbrook MR. Tick-borne encephalitis vaccines. J Bioterrorism Biodefense. 2011;2011:003.
Google Scholar
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017;7:114.
PubMed
PubMed Central
Google Scholar
Vayssier-Taussat M, Kazimirova M, Hubalek Z, Hornok S, Farkas R, Cosson J-F, et al. Emerging horizons for tick-borne pathogens: from the “one pathogen-one disease” vision to the pathobiome paradigm. Future Microbiol. 2015;10:2033–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
de la Fuente J, Contreras M, Estrada-Peña A, Cabezas-Cruz A. Targeting a global health problem: vaccine design and challenges for the control of tick-borne diseases. Vaccine. 2017;35:5089–94.
Article
PubMed
Google Scholar
Fischhoff IR, Keesing F, Ostfeld RS. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods. PLoS ONE. 2017;12:e0187675.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schorderet-Weber S, Noack S, Selzer PM, Kaminsky R. Blocking transmission of vector-borne diseases. Int J Parasitol Drugs Drug Resist. 2017;7:90–109.
Article
PubMed
PubMed Central
Google Scholar
de la Fuente J, Contreras M. Tick vaccines: current status and future directions. Expert Rev Vaccines. 2015;14:1367–76.
Article
PubMed
CAS
Google Scholar
Trager W. Acquired immunity to ticks. J Parasitol. 1939;25:57–81.
Article
Google Scholar
Wikel SK. Host immunity to ticks. Annu Rev Entomol. 1996;41:1–22.
Article
CAS
PubMed
Google Scholar
Ribeiro JM. Role of saliva in tick/host interactions. Exp Appl Acarol. 1989;7:15–20.
Article
CAS
PubMed
Google Scholar
Paine SH, Kemp DH, Allen JR. In vitro feeding of Dermacentor andersoni (Stiles): effects of histamine and other mediators. Parasitology. 1983;86:419–28.
Article
CAS
PubMed
Google Scholar
Wada T, Ishiwata K, Koseki H, Ishikura T, Ugajin T, Ohnuma N, et al. Selective ablation of basophils in mice reveals their nonredundant role in acquired immunity against ticks. J Clin Investig. 2010;120:2867–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson JM, Moore IN, Nagata BM, Ribeiro JMC, Valenzuela JG, Sonenshine DE. Ticks, Ixodes scapularis, feed repeatedly on white-footed mice despite strong inflammatory response: an expanding paradigm for understanding tick–host interactions. Front Immunol. 2017;8:1784.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ribeiro JMC, Alarcon-Chaidez F, Francischetti IMB, Mans BJ, Mather TN, Valenzuela JG, et al. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. 2006;36:111–29.
Article
CAS
PubMed
Google Scholar
Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JMC. The role of saliva in tick feeding. Front Biosci Landmark Ed. 2009;14:2051–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brossard M, Girardin P. Passive transfer of resistance in rabbits infested with adult Ixodes ricinus L: humoral factors influence feeding and egg laying. Experientia. 1979;35:1395–7.
Article
CAS
PubMed
Google Scholar
Roberts JA, Kerr JD. Boophilus microplus: passive transfer of resistance in cattle. J Parasitol. 1976;62:485–8.
Article
CAS
PubMed
Google Scholar
Wikel SK, Allen JR. Acquired resistance to ticks. I. Passive transfer of resistance. Immunology. 1976;30:311–6.
CAS
PubMed
PubMed Central
Google Scholar
Rueckert C, Guzmán CA. Vaccines: from empirical development to rational design. PLoS Pathog. 2012;8:e1003001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carreón D, de la Lastra JMP, Almazán C, Canales M, Ruiz-Fons F, Boadella M, et al. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine. 2012;30:273–9.
Article
PubMed
CAS
Google Scholar
Pal U, Li X, Wang T, Montgomery RR, Ramamoorthi N, Desilva AM, et al. TROSPA, an Ixodes scapularis receptor for Borrelia burgdorferi. Cell. 2004;119:457–68.
Article
CAS
PubMed
Google Scholar
de la Fuente J, Almazán C, Canales M, Pérez de la Lastra JM, Kocan KM, Willadsen P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev. 2007;8:23–8.
Article
PubMed
Google Scholar
Jonsson NN, Matschoss AL, Pepper P, Green PE, Albrecht MS, Hungerford J, et al. Evaluation of tickGARD(PLUS), a novel vaccine against Boophilus microplus, in lactating Holstein-Friesian cows. Vet Parasitol. 2000;88:275–85.
Article
CAS
PubMed
Google Scholar
de la Fuente J, Rodríguez M, Montero C, Redondo M, García-García JC, Méndez L, et al. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. Genet Anal Biomol Eng. 1999;15:143–8.
Article
Google Scholar
Coumou J, Wagemakers A, Trentelman JJ, Nijhof AM, Hovius JW. Vaccination against Bm86 homologues in rabbits does not impair Ixodes ricinus feeding or oviposition. PLoS ONE. 2014;10:e0123495.
Article
PubMed
CAS
Google Scholar
Narasimhan S, Deponte K, Marcantonio N, Liang X, Royce TE, Nelson KF, et al. Immunity against Ixodes scapularis salivary proteins expressed within 24 hours of attachment thwarts tick feeding and impairs Borrelia transmission. PLoS ONE. 2007;2:e451.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sprong H, Trentelman J, Seemann I, Grubhoffer L, Rego RO, Hajdušek O, et al. ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasites Vectors. 2014;7:77.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rizzoli A, Hauffe H, Carpi G, Vourc HG, Neteler M, Rosa R. Lyme borreliosis in Europe. Eurosurveillance. 2011;16:27.
Google Scholar
Olson CM Jr, Fikrig E, Anguita J. Host defenses to spirochetes. In: Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM, editors. Clinical immunology: principles and practice. 4th ed. London: Sounders; 2013. p. 338–45.
Google Scholar
Kuehn BM. CDC estimates 300,000 US cases of Lyme disease annually. JAMA. 2013;310:1110.
Article
CAS
PubMed
Google Scholar
Hahn MB, Jarnevich CS, Monaghan AJ, Eisen RJ. Modeling the geographic distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the Contiguous United States. J Med Entomol. 2016;53:5.
Article
Google Scholar
Hofhuis A, van de Kassteele J, Sprong H, van den Wijngaard CC, Harms MG, Fonville M, et al. Predicting the risk of Lyme borreliosis after a tick bite, using a structural equation model. PLoS ONE. 2017;12:e0181807.
Article
PubMed
PubMed Central
CAS
Google Scholar
Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors. 2013;6:1.
Article
PubMed
PubMed Central
Google Scholar
Rumer L, Sheshukova O, Dautel H, Donoso Mantke O, Niedrig M. Differentiation of medically important Euro-Asian tick species Ixodes ricinus, Ixodes persulcatus, Ixodes hexagonus, and Dermacentor reticulatus by polymerase chain reaction. Vector Borne Zoonotic Dis. 2011;11:899–905.
Article
PubMed
Google Scholar
van Duijvendijk G, Coipan C, Wagemakers A, Fonville M, Ersöz J, Oei A, et al. Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites Vectors. 2016;9:97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Strnad M, Hönig V, Růžek D, Grubhoffer L, Rego ROM. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl Environ Microbiol. 2017;83:15.
Article
Google Scholar
Hofmeester TR, Coipan EC, van Wieren SE, Prins HHT, Takken W, Sprong H. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle. Environ Res Lett. 2016;11:043001.
Article
Google Scholar
Dunham-Ems SM, Caimano MJ, Pal U, Wolgemuth CW, Eggers CH, Balic A, et al. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J Clin Investig. 2009;119:3652–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fikrig E, Barthold SW, Kantor FS, Flavell RA. Protection of mice against the Lyme disease agent by immunizing with recombinant OspA. Science. 1990;250:553–6.
Article
CAS
PubMed
Google Scholar
Zhang L, Zhang Y, Adusumilli S, Liu L, Narasimhan S, Dai J, et al. Molecular interactions that enable movement of the Lyme disease agent from the tick gut into the hemolymph. PLoS Pathog. 2011;7:e1002079.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pospisilova T, Urbanova V, Hes O, Kopacek P, Hajdusek O, Sima R. Tracking Borrelia afzelii from infected Ixodes ricinus nymphs to mice suggests a direct ‘gut-to-mouth’ route of Lyme disease transmission. BioRxiv. 2018;67:78.
Google Scholar
Steere AC, Sikand VK, Meurice F, Parenti DL, Fikrig E, Schoen RT, et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer-surface lipoprotein A with adjuvant. N Engl J Med. 1998;339:209–15.
Article
CAS
PubMed
Google Scholar
Nigrovic LE, Thompson KM. The Lyme vaccine: a cautionary tale. Epidemiol Infect. 2007;135:1–8.
Article
CAS
PubMed
Google Scholar
Comstedt P, Schüler W, Meinke A, Lundberg U. The novel Lyme borreliosis vaccine VLA15 shows broad protection against Borrelia species expressing six different OspA serotypes. PLoS ONE. 2017;12:e0184357.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kotsyfakis M, Sá-Nunes A, Francischetti IMB, Mather TN, Andersen JF, Ribeiro JMC. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J Biol Chem. 2006;281:26298–307.
Article
CAS
PubMed
Google Scholar
Schuijt TJ, Narasimhan S, Daffre S, DePonte K, Hovius JWR, Van’t Veer C, et al. Identification and characterization of Ixodes scapularis antigens that elicit tick immunity using yeast surface display. PLoS ONE. 2011;6:e15926.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagemakers A, Coumou J, Schuijt TJ, Oei A, Nijhof AM, van ’t Veer C, et al. An Ixodes ricinus tick salivary lectin pathway inhibitor protects Borrelia burgdorferi sensu lato from human complement. Vector Borne Zoonotic Dis. 2016;16:223–8.
Article
PubMed
Google Scholar
Schuijt TJ, Bakhtiari K, Daffre S, Deponte K, Wielders SJH, Marquart JA, et al. Factor Xa activation of factor V is of paramount importance in initiating the coagulation system: lessons from a tick salivary protein. Circulation. 2013;128:254–66.
Article
CAS
PubMed
Google Scholar
Schuijt TJ, Coumou J, Narasimhan S, Dai J, Deponte K, Wouters D, et al. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell Host Microbe. 2011;10:136–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramamoorthi N, Narasimhan S, Pal U, Bao F, Yang XF, Fish D, et al. The Lyme disease agent exploits a tick protein to infect the mammalian host. Nature. 2005;436:573–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotté V, Sabatier L, Schnell G, Carmi-Leroy A, Rousselle J-C, Arsène-Ploetze F, et al. Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. J Proteomics. 2014;96:29–43.
Article
PubMed
CAS
Google Scholar
Dai J, Narasimhan S, Zhang L, Liu L, Wang P, Fikrig E. Tick histamine release factor is critical for Ixodes scapularis engorgement and transmission of the Lyme disease agent. PLoS Pathog. 2010;6:e1001205.
Article
PubMed
PubMed Central
CAS
Google Scholar
Narasimhan S, Coumou J, Schuijt TJ, Boder E, Hovius JW, Fikrig E. A tick gut protein with fibronectin III domains aids Borrelia burgdorferi congregation to the gut during transmission. PLoS Pathog. 2014;10:e1004278.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coumou J, Narasimhan S, Trentelman JJ, Wagemakers A, Koetsveld J, Ersoz JI, et al. Ixodes scapularis dystroglycan-like protein promotes Borrelia burgdorferi migration from the gut. J Mol Med. 2016;94:361–70.
Article
CAS
PubMed
Google Scholar
Embers ME, Narasimhan S. Vaccination against Lyme disease: past, present, and future. Front Cell Infect Microbiol. 2013;3:6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hovius JWR, van Dam AP, Fikrig E. Tick–host–pathogen interactions in Lyme borreliosis. Trends Parasitol. 2007;23:434–8.
Article
CAS
PubMed
Google Scholar
Klouwens MJ, Trentelman JJ, Hovius JWR. Anti-tick vaccines to prevent tick-borne diseases: an overview and a glance at the future. In: Ecol Prev Lyme Borreliosis. Wageningen: Wageningen Academic Publishers; 2016. p. 295–316.
Merino O, Alberdi P, Pérez de la Lastra JM, de la Fuente J. Tick vaccines and the control of tick-borne pathogens. Front Cell Infect Microbiol. 2013;3:30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brossard M, Fivaz V. Ixodes ricinus L.: mast cells, basophils and eosinophils in the sequence of cellular events in the skin of infested or re-infested rabbits. Parasitology. 1982;85:583–92.
Article
PubMed
Google Scholar
Monteiro GER, Bechara GH. Cutaneous basophilia in the resistance of goats to Amblyomma cajennense nymphs after repeated infestations. Ann N Y Acad Sci. 2008;1149:221–5.
Article
PubMed
Google Scholar
Kemp DH, Bourne A. Boophilus microplus: the effect of histamine on the attachment of cattle-tick larvae—studies in vivo and in vitro. Parasitology. 1980;80:487–96.
Article
CAS
PubMed
Google Scholar
Das S, Banerjee G, DePonte K, Marcantonio N, Kantor FS, Fikrig E. Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands. J Infect Dis. 2001;184:1056–64.
Article
CAS
PubMed
Google Scholar
Dai J, Wang P, Adusumilli S, Booth CJ, Narasimhan S, Anguita J, et al. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 2009;6:482–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anguita J, Ramamoorthi N, Hovius JWR, Das S, Thomas V, Persinski R, et al. Salp15, an ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity. 2002;16:849–59.
Article
CAS
PubMed
Google Scholar
Garg R, Juncadella IJ, Ramamoorthi N, Ananthanarayanan SK, Thomas V, et al. Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. J Immunol. 1950;2006(177):6579–83.
Google Scholar
Juncadella IJ, Garg R, Boone CD, Anguita J, Krueger JK. Conformational rearrangement within the soluble domains of the CD4 receptor is ligand-specific. J Biol Chem. 2008;283:2761–72.
Article
PubMed
Google Scholar
Juncadella IJ, Garg R, Ananthnarayanan SK, Yengo CM, Anguita J. T-cell signaling pathways inhibited by the tick saliva immunosuppressor, Salp15. FEMS Immunol Med Microbiol. 2007;49:433–8.
Article
CAS
PubMed
Google Scholar
Hovius JWR, de Jong MAWP, den Dunnen J, Litjens M, Fikrig E, van der Poll T, et al. Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog. 2008;4:e31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schuijt TJ, Hovius JWR, van Burgel ND, Ramamoorthi N, Fikrig E, van Dam AP. The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infect Immun. 2008;76:2888–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hovius JWR, Levi M, Fikrig E. Salivating for knowledge: potential pharmacological agents in tick saliva. PLoS Med. 2008;5:e43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paveglio SA, Allard J, Mayette J, Whittaker LA, Juncadella I, Anguita J, et al. The tick salivary protein, Salp15, inhibits the development of experimental asthma. J Immunol. 2007;178:7064–71.
Article
CAS
PubMed
Google Scholar
Juncadella IJ, Bates TC, Suleiman R, Monteagudo-Mera A, Olson CM, Navasa N, et al. The tick saliva immunosuppressor, Salp15, contributes to Th17-induced pathology during experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun. 2010;402:105–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Süss J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia—an overview. Ticks Tick Borne Dis. 2011;2:2–15.
Article
PubMed
Google Scholar
Donoso Mantke O, Escadafal C, Niedrig M, Pfeffer M, Working Group For Tick-Borne Encephalitis Virus C. Tick-borne encephalitis in Europe, 2007 to 2009. Eurosurveillance. 2011;16:39.
Article
Google Scholar
Dobler G. Zoonotic tick-borne flaviviruses. Vet Microbiol. 2010;140:221–8.
Article
PubMed
Google Scholar
Amicizia D, Domnich A, Panatto D, Lai PL, Cristina ML, Avio U, et al. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Hum Vaccines Immunother. 2013;9:1163–71.
Article
Google Scholar
Gritsun TS, Lashkevich VA, Gould EA. Tick-borne encephalitis. Antiviral Res. 2003;57:129–46.
Article
CAS
PubMed
Google Scholar
Šmit R, Postma MJ. Vaccines for tick-borne diseases and cost-effectiveness of vaccination: a public health challenge to reduce the diseases’ burden. Expert Rev Vaccines. 2016;15:5–7.
Article
PubMed
CAS
Google Scholar
Nuttall PA, Labuda M. Dynamics of infection in tick vectors and at the tick–host interface. Adv Virus Res. 2003;60:233–72.
Article
CAS
PubMed
Google Scholar
Randolph SE. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology. 2004;129(S1):S37–65.
Article
PubMed
Google Scholar
Slovák M, Kazimírová M, Siebenstichová M, Ustaníková K, Klempa B, Gritsun T, et al. Survival dynamics of tick-borne encephalitis virus in Ixodes ricinus ticks. Ticks Tick Borne Dis. 2014;5:962–9.
Article
PubMed
Google Scholar
Labuda M, Danielova V, Jones LD, Nuttall PA. Amplification of tick-borne encephalitis virus infection during co-feeding of ticks. Med Vet Entomol. 1993;7:339–42.
Article
CAS
PubMed
Google Scholar
Labuda M, Kozuch O, Zuffová E, Elecková E, Hails RS, Nuttall PA. Tick-borne encephalitis virus transmission between ticks cofeeding on specific immune natural rodent hosts. Virology. 1997;235:138–43.
Article
CAS
PubMed
Google Scholar
Labuda M, Austyn JM, Zuffova E, Kozuch O, Fuchsberger N, Lysy J, et al. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology. 1996;219:357–66.
Article
CAS
PubMed
Google Scholar
Nuttall PA, Labuda M. Saliva-assisted transmission of tick-borne pathogens. In: Bowman AS, Nuttall PA, editors. Ticks: biology, disease and control. Cambridge: Cambridge University Press; 2008. p. 205–19.
Chapter
Google Scholar
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, et al. Tick-borne viruses and biological processes at the tick–host–virus interface. Front Cell Infect Microbiol. 2017;7:339.
Article
PubMed
PubMed Central
CAS
Google Scholar
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The essential role of tick salivary glands and saliva in tick feeding and pathogen transmission. Front Cell Infect Microbiol. 2017;7:281.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kotsyfakis M, Karim S, Andersen JF, Mather TN, Ribeiro JMC. Selective cysteine protease inhibition contributes to blood-feeding success of the tick Ixodes scapularis. J Biol Chem. 2007;282:29256–63.
Article
CAS
PubMed
Google Scholar
Lieskovská J, Páleníková J, Širmarová J, Elsterová J, Kotsyfakis M, Campos Chagas A, et al. Tick salivary cystatin sialostatin L2 suppresses IFN responses in mouse dendritic cells. Parasite Immunol. 2015;37:70–8.
Article
PubMed
CAS
Google Scholar
Manjunathachar HV, Kumar B, Saravanan BC, Choudhary S, Mohanty AK, Nagar G, et al. Identification and characterization of vaccine candidates against Hyalomma anatolicum—vector of Crimean-Congo haemorrhagic fever virus. Transbound Emerg Dis. 2019;66:1.
Article
CAS
Google Scholar
Trimnell AR, Davies GM, Lissina O, Hails RS, Nuttall PA. A cross-reactive tick cement antigen is a candidate broad-spectrum tick vaccine. Vaccine. 2005;23:4329–41.
Article
CAS
PubMed
Google Scholar
Trimnell AR, Hails RS, Nuttall PA. Dual action ectoparasite vaccine targeting “exposed” and “concealed” antigens. Vaccine. 2002;20:3560–8.
Article
CAS
PubMed
Google Scholar
Labuda M, Trimnell AR, Licková M, Kazimírová M, Davies GM, Lissina O, et al. An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog. 2006;2:e27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zivkovic Z, Torina A, Mitra R, Alongi A, Scimeca S, Kocan KM, et al. Subolesin expression in response to pathogen infection in ticks. BMC Immunol. 2010;11:7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Galindo RC, Doncel-Pérez E, Zivkovic Z, Naranjo V, Gortazar C, Mangold AJ, et al. Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev Comp Immunol. 2009;33:612–7.
Article
CAS
PubMed
Google Scholar
Mangold AJ, Galindo RC, de la Fuente J, Response to the commentary of D. Macqueen on: Galindo RC, Doncel-Pérez E, Zivkovic Z, Naranjo V, Gortazar C, Mangold AJ, et al. Tick subolesin is an ortholog of the akirins described in insects and vertebrates [Dev. Comp. Immunol. 33 (2009) 612–617]. Dev Comp Immunol. 2009;33:878–9.
Article
Google Scholar
de la Fuente J, Almazán C, Blouin EF, Naranjo V, Kocan KM. Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitol Res. 2006;100:85–91.
Article
PubMed
Google Scholar
Bensaci M, Bhattacharya D, Clark R, Hu LT. Oral vaccination with vaccinia virus expressing the tick antigen subolesin inhibits tick feeding and transmission of Borrelia burgdorferi. Vaccine. 2012;30:6040–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merino O, Almazán C, Canales M, Villar M, Moreno-Cid JA, Galindo RC, et al. Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine. 2011;29:8575–9.
Article
CAS
PubMed
Google Scholar
Havlíková S, Ličková M, Ayllón N, Roller L, Kazimírová M, Slovák M, et al. Immunization with recombinant subolesin does not reduce tick infection with tick-borne encephalitis virus nor protect mice against disease. Vaccine. 2013;31:1582–9.
Article
PubMed
CAS
Google Scholar
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol. 2013;3:31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gordon WS, Brownlee A, Wilson DR, Macleod J. Tick-borne fever: a hitherto undescribed disease of sheep. J Comp Pathol Ther. 1932;45:301–7.
Article
Google Scholar
Chen SM, Dumler JS, Bakken JS, Walker DH. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J Clin Microbiol. 1994;32:589–95.
CAS
PubMed
PubMed Central
Google Scholar
Woldehiwet Z. The natural history of Anaplasma phagocytophilum. Vet Parasitol. 2010;167:108–22.
Article
CAS
PubMed
Google Scholar
Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin N Am. 2015;29:341–55.
Article
Google Scholar
de la Fuente J, Estrada-Peña A, Cabezas-Cruz A, Kocan KM. Anaplasma phagocytophilum uses common strategies for infection of ticks and vertebrate hosts. Trends Microbiol. 2016;24:173–80.
Article
PubMed
CAS
Google Scholar
Telford SR, Dawson JE, Katavolos P, Warner CK, Kolbert CP, Persing DH. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc Natl Acad Sci USA. 1996;93:6209–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuen S, Okstad W, Artursson K, Al-Khedery B, Barbet A, Granquist EG. Lambs immunized with an inactivated variant of Anaplasma phagocytophilum. Acta Vet Scand. 2015;57:40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ojogun N, Kahlon A, Ragland SA, Troese MJ, Mastronunzio JE, Walker NJ, et al. Anaplasma phagocytophilum outer membrane protein A interacts with sialylated glycoproteins to promote infection of mammalian host cells. Infect Immun. 2012;80:3748–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kahlon A, Ojogun N, Ragland SA, Seidman D, Troese MJ, Ottens AK, et al. Anaplasma phagocytophilum Asp14 is an invasin that interacts with mammalian host cells via its C terminus to facilitate infection. Infect Immun. 2013;81:65–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seidman D, Ojogun N, Walker NJ, Mastronunzio J, Kahlon A, Hebert KS, et al. Anaplasma phagocytophilum surface protein AipA mediates invasion of mammalian host cells. Cell Microbiol. 2014;16:1133–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seidman D, Hebert KS, Truchan HK, Miller DP, Tegels BK, Marconi RT, et al. Essential domains of Anaplasma phagocytophilum invasins utilized to infect mammalian host cells. PLoS Pathog. 2015;11:e1004669.
Article
PubMed
PubMed Central
CAS
Google Scholar
Contreras M, Alberdi P, Mateos-Hernández L, Fernández de Mera IG, García-Pérez AL, Vancová M, et al. Anaplasma phagocytophilum MSP4 and HSP70 proteins are involved in interactions with host cells during pathogen infection. Front Cell Infect Microbiol. 2017;7:307.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sukumaran B, Narasimhan S, Anderson JF, DePonte K, Marcantonio N, Krishnan MN, et al. An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. J Exp Med. 2006;203:1507–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Narasimhan S, Dai J, Zhang L, Cheng G, Fikrig E. Ixodes scapularis salivary gland protein P11 facilitates migration of Anaplasma phagocytophilum from the tick gut to salivary glands. EMBO Rep. 2011;12:1196–203.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ayllón N, Villar M, Galindo RC, Kocan KM, Šíma R, López JA, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 2015;11:e1005120.
Article
PubMed
PubMed Central
CAS
Google Scholar
Villar M, Ayllón N, Alberdi P, Moreno A, Moreno M, Tobes R, et al. Integrated metabolomics, transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma phagocytophilum infection in tick cells. Mol Cell Proteomics MCP. 2015;14:3154–72.
Article
CAS
PubMed
Google Scholar
Neelakanta G, Sultana H, Fish D, Anderson JF, Fikrig E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J Clin Investig. 2010;120:3179–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedra JHF, Narasimhan S, Rendić D, DePonte K, Bell-Sakyi L, Wilson IBH, et al. Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cell Microbiol. 2010;12:1222–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Contreras M, Alberdi P, Fernández De Mera IG, Krull C, Nijhof A, Villar M, et al. Vaccinomics approach to the identification of candidate protective antigens for the control of tick vector infestations and Anaplasma phagocytophilum infection. Front Cell Infect Microbiol. 2017;7:360.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sultana H, Neelakanta G, Kantor FS, Malawista SE, Fish D, Montgomery RR, et al. Anaplasma phagocytophilum induces actin phosphorylation to selectively regulate gene transcription in Ixodes scapularis ticks. J Exp Med. 2010;207:1727–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heisig M, Abraham NM, Liu L, Neelakanta G, Mattessich S, Sultana H, et al. Antivirulence properties of an antifreeze protein. Cell Rep. 2014;9:417–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci USA. 2017;114:E781–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
de la Fuente J, Canales M, Kocan KM. The importance of protein glycosylation in development of novel tick vaccine strategies. Parasite Immunol. 2006;28:687–8.
Article
PubMed
CAS
Google Scholar
de la Fuente J, Moreno-Cid JA, Galindo RC, Almazan C, Kocan KM, Merino O, et al. Subolesin/Akirin vaccines for the control of arthropod vectors and vectorborne pathogens. Transbound Emerg Dis. 2013;60(Suppl. 2):172–8.
Article
PubMed
Google Scholar
Portillo A, Santibáñez S, García-Álvarez L, Palomar AM, Oteo JA. Rickettsioses in Europe. Microbes Infect. 2015;17:834–8.
Article
PubMed
Google Scholar
Eremeeva ME, Dasch GA. Challenges posed by tick-borne rickettsiae: eco-epidemiology and public health implications. Front Public Health. 2015;3:55.
Article
PubMed
PubMed Central
Google Scholar
Sahni SK, Narra HP, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol. 2013;8:1265–88.
Article
CAS
PubMed
Google Scholar
Botelho-Nevers E, Socolovschi C, Raoult D, Parola P. Treatment of Rickettsia spp. infections: a review. Expert Rev Anti Infect Ther. 2012;10:1425–37.
Article
CAS
PubMed
Google Scholar
Chan YG-Y, Riley SP, Martinez JJ. Adherence to and invasion of host cells by spotted fever group Rickettsia species. Front Microbiol. 2010;1:139.
Article
PubMed
PubMed Central
Google Scholar
Walker DH. The realities of biodefense vaccines against Rickettsia. Vaccine. 2009;27(Suppl. 4):D52–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richards AL. Rickettsial vaccines: the old and the new. Expert Rev Vaccines. 2004;3:541–55.
Article
CAS
PubMed
Google Scholar
El Karkouri K, Kowalczewska M, Armstrong N, Azza S, Fournier P-E, Raoult D. Multi-omics analysis sheds light on the evolution and the intracellular lifestyle strategies of spotted fever group Rickettsia spp. Front Microbiol. 2017;8:1363.
Article
PubMed
PubMed Central
Google Scholar
Walker DH, Ismail N. Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol. 2008;6:375–86.
Article
CAS
PubMed
Google Scholar
Ireton K. Molecular mechanisms of cell–cell spread of intracellular bacterial pathogens. Open Biol. 2013;3:130079.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kuehl CJ, Dragoi A-M, Talman A, Agaisse H. Bacterial spread from cell to cell: beyond actin-based motility. Trends Microbiol. 2015;23:558–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldberg MB. Actin-based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev. 2001;65:595–626.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petchampai N, Sunyakumthorn P, Banajee KH, Verhoeve VI, Kearney MT, Macaluso KR. Identification of host proteins involved in rickettsial invasion of tick cells. Infect Immun. 2015;83:1048–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martinez JJ, Cossart P. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J Cell Sci. 2004;117:5097–106.
Article
CAS
PubMed
Google Scholar
Petchampai N, Sunyakumthorn P, Guillotte ML, Verhoeve VI, Banajee KH, Kearney MT, et al. Novel identification of Dermacentor variabilis Arp2/3 complex and its role in rickettsial infection of the arthropod vector. PLoS ONE. 2014;9:e93768.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jeng RL, Goley ED, D’Alessio JA, Chaga OY, Svitkina TM, Borisy GG, et al. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell Microbiol. 2004;6:761–9.
Article
CAS
PubMed
Google Scholar
Oliver JD, Burkhardt NY, Felsheim RF, Kurtti TJ, Munderloh UG. Motility characteristics are altered for Rickettsia bellii transformed to overexpress a heterologous rickA gene. Appl Environ Microbiol. 2014;80:1170–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Petchampai N, Sunyakumthorn P, Guillotte ML, Thepparit C, Kearney MT, Mulenga A, et al. Molecular and functional characterization of vacuolar-ATPase from the American dog tick Dermacentor variabilis. Insect Mol Biol. 2014;23:42–51.
Article
CAS
PubMed
Google Scholar
Charpentier BM, Bach MA, Lang P, Martin B, Fries D. Phenotypic composition and in vitro functional capacities of unmodified fresh cells infiltrating acutely rejected human kidney allografts. Transplantation. 1987;44:38–43.
Article
CAS
PubMed
Google Scholar
Macaluso KR, Mulenga A, Simser JA, Azad AF. Differential expression of genes in uninfected and rickettsia-infected Dermacentor variabilis ticks as assessed by differential-display PCR. Infect Immun. 2003;71:6165–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sunyakumthorn P, Petchampai N, Grasperge BJ, Kearney MT, Sonenshine DE, Macaluso KR. Gene expression of tissue-specific molecules in ex vivo Dermacentor variabilis (Acari: Ixodidae) during rickettsial exposure. J Med Entomol. 2013;50:1089–96.
Article
CAS
PubMed
Google Scholar
Mulenga A, Simser JA, Macaluso KR, Azad AF. Stress and transcriptional regulation of tick ferritin HC. Insect Mol Biol. 2004;13:423–33.
Article
CAS
PubMed
Google Scholar
Mulenga A, Macaluso KR, Simser JA, Azad AF. Dynamics of Rickettsia-tick interactions: identification and characterization of differentially expressed mRNAs in uninfected and infected Dermacentor variabilis. Insect Mol Biol. 2003;12:185–93.
Article
CAS
PubMed
Google Scholar
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek Z, Földvári G, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health. 2014;2:251.
Article
PubMed
PubMed Central
Google Scholar
Speck S, Kern T, Aistleitner K, Dilcher M, Dobler G, Essbauer S. In vitro studies of Rickettsia-host cell interactions: confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines. PLoS Negl Trop Dis. 2018;12:e0006151.
Article
PubMed
PubMed Central
Google Scholar
Elfving K, Lukinius A, Nilsson K. Life cycle, growth characteristics and host cell response of Rickettsia helvetica in a Vero cell line. Exp Appl Acarol. 2012;56:179–87.
Article
PubMed
Google Scholar
Socolovschi C, Mediannikov O, Raoult D, Parola P. The relationship between spotted fever group rickettsiae and ixodid ticks. Vet Res. 2009;40:34.
Article
PubMed
PubMed Central
Google Scholar
Ahantarig A, Trinachartvanit W, Baimai V, Grubhoffer L. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol. 2013;58:419–28.
Article
CAS
Google Scholar
Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends Parasitol. 2015;31:315–23.
Article
PubMed
PubMed Central
Google Scholar
Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol. 2017;7:236.
Article
PubMed
PubMed Central
Google Scholar
Homer MJ, Aguilar-Delfin I, Telford SR, Krause PJ, Persing DH. Babesiosis. Clin Microbiol Rev. 2000;13:451–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunfeld K-P, Hildebrandt A, Gray JS. Babesiosis: recent insights into an ancient disease. Int J Parasitol. 2008;38:1219–37.
Article
CAS
PubMed
Google Scholar
Zintl A, Mulcahy G, Skerrett HE, Taylor SM, Gray JS. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin Microbiol Rev. 2003;16:622–36.
Article
PubMed
PubMed Central
Google Scholar
Leiby DA. Transfusion-transmitted Babesia spp.: bull’s-eye on Babesia microti. Clin Microbiol Rev. 2011;24:14–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kjemtrup AM, Conrad PA. Human babesiosis: an emerging tick-borne disease. Int J Parasitol. 2000;30:1323–37.
Article
CAS
PubMed
Google Scholar
Gohil S, Herrmann S, Günther S, Cooke BM. Bovine babesiosis in the 21st century: advances in biology and functional genomics. Int J Parasitol. 2013;43:125–32.
Article
CAS
PubMed
Google Scholar
Bock R, Jackson L, de Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129(S1):S247–69.
Article
PubMed
Google Scholar
Wise LN, Pelzel-McCluskey AM, Mealey RH, Knowles DP. Equine piroplasmosis. Vet Clin N Am Equine Pract. 2014;30:677–93.
Article
Google Scholar
Irwin PJ. Canine babesiosis: from molecular taxonomy to control. Parasites Vectors. 2009;2(Suppl. 1):S4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology. 2014;141:12.
Article
Google Scholar
Suarez CE, Noh S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet Parasitol. 2011;180:109–25.
Article
PubMed
Google Scholar
Vannier E, Krause PJ. Human babesiosis. N Engl J Med. 2012;366:2397–407.
Article
CAS
PubMed
Google Scholar
Häselbarth K, Tenter AM, Brade V, Krieger G, Hunfeld K-P. First case of human babesiosis in Germany—clinical presentation and molecular characterisation of the pathogen. Int J Med Microbiol IJMM. 2007;297:197–204.
Article
PubMed
CAS
Google Scholar
Herwaldt BL, Cacciò S, Gherlinzoni F, Aspöck H, Slemenda SB, Piccaluga P, et al. Molecular characterization of a non-Babesia divergens organism causing zoonotic babesiosis in Europe. Emerg Infect Dis. 2003;9:942–8.
Article
CAS
PubMed
Google Scholar
Conrad PA, Kjemtrup AM, Carreno RA, Thomford J, Wainwright K, Eberhard M, et al. Description of Babesia duncani n.csp. (Apicomplexa: Babesiidae) from humans and its differentiation from other piroplasms. Int J Parasitol. 2006;36:779–89.
Article
PubMed
Google Scholar
Bloch EM, Herwaldt BL, Leiby DA, Shaieb A, Herron RM, Chervenak M, et al. The third described case of transfusion-transmitted Babesia duncani. Transfusion. 2012;52:1517–22.
Article
PubMed
Google Scholar
Lobo CA, Cursino-Santos JR, Alhassan A, Rodrigues M. Babesia: an emerging infectious threat in transfusion medicine. PLoS Pathog. 2013;9:e1003387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vannier E, Gewurz BE, Krause PJ. Human babesiosis. Infect Dis Clin N Am. 2008;22:469–88.
Article
Google Scholar
Krause PJ, Lepore T, Sikand VK, Gadbaw J, Burke G, Telford SR, et al. Atovaquone and azithromycin for the treatment of babesiosis. N Engl J Med. 2000;343:1454–8.
Article
CAS
PubMed
Google Scholar
Vannier E, Krause PJ. Update on babesiosis. Interdiscip Perspect Infect Dis. 2009;2009:984568.
Article
PubMed
PubMed Central
CAS
Google Scholar
Krause PJ, Gewurz BE, Hill D, Marty FM, Vannier E, Foppa IM, et al. Persistent and relapsing babesiosis in immunocompromised patients. Clin Infect Dis. 2008;46:370–6.
Article
PubMed
Google Scholar
Krause PJ. Babesiosis. Med Clin N Am. 2002;86:361–73.
Article
PubMed
Google Scholar
Rosner F, Zarrabi MH, Benach JL, Habicht GS. Babesiosis in splenectomized adults. Review of 22 reported cases. Am J Med. 1984;76:696–701.
Article
CAS
PubMed
Google Scholar
Stowell CP, Gelfand JA, Shepard J-AO, Kratz A. Case records of the Massachusetts General Hospital. Case 17–2007. A 25-year-old woman with relapsing fevers and recent onset of dyspnea. N Engl J Med. 2007;356:2313–9.
Article
CAS
PubMed
Google Scholar
Rodriguez AE, Florin-Christensen M, Flores DA, Echaide I, Suarez CE, Schnittger L. The glycosylphosphatidylinositol-anchored protein repertoire of Babesia bovis and its significance for erythrocyte invasion. Ticks Tick Borne Dis. 2014;5:343–8.
Article
PubMed
Google Scholar
Kleuskens J, Moubri-Menage K, Rohwer A, Schetters TPM. Canine babesiosis vaccine antigen. 2012. https://patents.google.com/patent/WO2012089748A1/en. Accessed 22 Oct 2018.
Yabsley MJ, Shock BC. Natural history of zoonotic Babesia: role of wildlife reservoirs. Int J Parasitol Parasites Wildl. 2013;2:18–31.
Article
PubMed
Google Scholar
Vannier EG, Diuk-Wasser MA, Ben Mamoun C, Krause PJ. Babesiosis. Infect Dis Clin N Am. 2015;29:357–70.
Article
Google Scholar
Gray J, Zintl A, Hildebrandt A, Hunfeld K-P, Weiss L. Zoonotic babesiosis: overview of the disease and novel aspects of pathogen identity. Ticks Tick Borne Dis. 2010;1:3–10.
Article
PubMed
Google Scholar
Benezra D, Brown AE, Polsky B, Gold JW, Armstrong D. Babesiosis and infection with human immunodeficiency virus (HIV). Ann Intern Med. 1987;107:944.
Article
CAS
PubMed
Google Scholar
Falagas ME, Klempner MS. Babesiosis in patients with AIDS: a chronic infection presenting as fever of unknown origin. Clin Infect Dis Off Publ Infect Dis Soc Am. 1996;22:809–12.
Article
CAS
Google Scholar
Froberg MK, Dannen D, Bakken JS. Babesiosis and HIV. Lancet Lond Engl. 2004;363:704.
Article
Google Scholar
Krause PJ, Telford SR, Spielman A, Sikand V, Ryan R, Christianson D, et al. Concurrent Lyme disease and babesiosis. Evidence for increased severity and duration of illness. JAMA. 1996;275:1657–60.
Article
CAS
PubMed
Google Scholar
Krause PJ, McKay K, Thompson CA, Sikand VK, Lentz R, Lepore T, et al. Disease-specific diagnosis of coinfecting tickborne zoonoses: babesiosis, human granulocytic ehrlichiosis, and Lyme disease. Clin Infect Dis. 2002;34:1184–91.
Article
PubMed
Google Scholar
Sonenshine DE, Roe RM, editors. Biology of ticks, vol. 1. 2nd ed. Oxford: Oxford University Press; 2014.
Google Scholar
Becker CAM, Bouju-Albert A, Jouglin M, Chauvin A, Malandrin L. Natural transmission of zoonotic Babesia spp. by Ixodes ricinus ticks. Emerg Infect Dis. 2009;15:320–2.
Article
PubMed
PubMed Central
Google Scholar
Bonnet S, Jouglin M, L’Hostis M, Chauvin A. Babesia sp. EU1 from roe deer and transmission within Ixodes ricinus. Emerg Infect Dis. 2007;13:1208–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonnet S, Brisseau N, Hermouet A, Jouglin M, Chauvin A. Experimental in vitro transmission of Babesia sp. (EU1) by Ixodes ricinus. Vet Res. 2009;40:21.
Article
PubMed
PubMed Central
Google Scholar
Cieniuch S, Stańczak J, Ruczaj A. The first detection of Babesia EU1 and Babesia canis canis in Ixodes ricinus ticks (Acari, Ixodidae) collected in urban and rural areas in northern Poland. Pol J Microbiol. 2009;58:231–6.
CAS
PubMed
Google Scholar
Zintl A, Finnerty EJ, Murphy TM, de Waal T, Gray JS. Babesias of red deer (Cervus elaphus) in Ireland. Vet Res. 2011;42:7.
Article
PubMed
PubMed Central
Google Scholar
Nikol’skii SN, Pozov SA. Ixodes ricinus ticks as carriers of Babesia capreoli in the roe deer. Veterinariia. 1972;4:62 (In Russian).
PubMed
Google Scholar
Gray J, von Stedingk LV, Gürtelschmid M, Granström M. Transmission studies of Babesia microti in Ixodes ricinus ticks and gerbils. J Clin Microbiol. 2002;40:1259–63.
Article
PubMed
PubMed Central
Google Scholar
Rudzinska MA, Spielman A, Riek RF, Lewengrub SJ, Piesman J. Intraerythrocytic, “gametocytes” of Babesia microti and their maturation in ticks. Can J Zool. 1979;57:424–34.
Article
CAS
PubMed
Google Scholar
Mehlhorn H, Shein E. The piroplasms: life cycle and sexual stages. Adv Parasitol. 1984;23:37–103.
Article
CAS
PubMed
Google Scholar
Piesman J, Karakashian SJ, Lewengrub S, Rudzinska MA, Spielmank A. Development of Babesia microti sporozoites in adult Ixodes dammini. Int J Parasitol. 1986;16:381–5.
Article
CAS
PubMed
Google Scholar
Karakashian SJ, Rudzinska MA, Spielman A, Lewengrub S, Piesman J, Shoukrey N. Ultrastructural studies on sporogony of Babesia microti in salivary gland cells of the tick Ixodes dammini. Cell Tissue Res. 1983;231:275–87.
Article
CAS
PubMed
Google Scholar
Cen-Aguilar JF, Rodríguez-Vivas RI, Domínguez-Alpizar JL, Wagner GG. Studies on the effect of infection by Babesia sp. on oviposition of Boophilus microplus engorged females naturally infected in the Mexican tropics. Vet Parasitol. 1998;78:253–7.
Article
CAS
PubMed
Google Scholar
Hajdušek O, Síma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, et al. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 2013;3:26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsuji N, Fujisaki K. Longicin plays a crucial role in inhibiting the transmission of Babesia parasites in the vector tick Haemaphysalis longicornis. Future Microbiol. 2007;2:575–8.
Article
CAS
PubMed
Google Scholar
Tsuji N, Battsetseg B, Boldbaatar D, Miyoshi T, Xuan X, Oliver JH, et al. Babesial vector tick defensin against Babesia sp. parasites. Infect Immun. 2007;75:3633–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog. 2008;4:e1000062.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu J, Yin R, Wu H, Yi J, Luo L, Dong G, et al. Cystatin C as a reliable marker of renal function following heart valve replacement surgery with cardiopulmonary bypass. Clin Chim Acta Int J Clin Chem. 2006;374:116–21.
Article
CAS
Google Scholar
Boldbaatar D, Battsetseg B, Matsuo T, Hatta T, Umemiya-Shirafuji R, Xuan X, et al. Tick vitellogenin receptor reveals critical role in oocyte development and transovarial transmission of Babesia parasite. Biochem Cell Biol Biochim Biol Cell. 2008;86:331–44.
Article
CAS
Google Scholar
Antunes S, Galindo RC, Almazán C, Rudenko N, Golovchenko M, Grubhoffer L, et al. Functional genomics studies of Rhipicephalus (Boophilus) annulatus ticks in response to infection with the cattle protozoan parasite, Babesia bigemina. Int J Parasitol. 2012;42:187–95.
Article
CAS
PubMed
Google Scholar
Rachinsky A, Guerrero FD, Scoles GA. Differential protein expression in ovaries of uninfected and Babesia-infected southern cattle ticks, Rhipicephalus (Boophilus) microplus. Insect Biochem Mol Biol. 2007;37:1291–308.
Article
CAS
PubMed
Google Scholar
Rachinsky A, Guerrero FD, Scoles GA. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet Parasitol. 2008;152:294–313.
Article
CAS
PubMed
Google Scholar
Heekin AM, Guerrero FD, Bendele KG, Saldivar L, Scoles GA, Gondro C, et al. Analysis of Babesia bovis infection-induced gene expression changes in larvae from the cattle tick, Rhipicephalus (Boophilus) microplus. Parasites Vectors. 2012;5:162.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Zee JP, Schlueter JA, Schlueter S, Dixon P, Sierra CAB, Hill CA. Paralog analyses reveal gene duplication events and genes under positive selection in Ixodes scapularis and other ixodid ticks. BMC Genomics. 2016;17:241.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chmelař J, Kotál J, Kopecky J, Pedra JH, Kotsyfakis M. All for one and one for all on the tick-host battlefield. Trends Parasitol. 2016;32:368–77.
Article
PubMed
PubMed Central
Google Scholar
Narasimhan S, Schuijt TJ, Abraham NM, Rajeevan N, Coumou J, Graham M, et al. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat Commun. 2017;8:184.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith AA, Navasa N, Yang X, Wilder CN, Buyuktanir O, Marques A, et al. Cross-species interferon signaling boosts microbicidal activity within the tick vector. Cell Host Microbe. 2016;20:91–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schetters T, Bishop R, Crampton M, Kopáček P, Lew-Tabor A, Maritz-Olivier C, et al. Cattle tick vaccine researchers join forces in CATVAC. Parasites Vectors. 2016;9:105.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cramaro WJ, Hunewald OE, Bell-Sakyi L, Muller CP. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasites Vectors. 2017;10:71.
Article
PubMed
PubMed Central
Google Scholar
Iwamoto N, Shimada T. Recent advances in mass spectrometry-based approaches for proteomics and biologics: great contribution for developing therapeutic antibodies. Pharmacol Ther. 2018;185:147–54.
Article
CAS
PubMed
Google Scholar
Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD. Isolating and engineering human antibodies using yeast surface display. Nat Protoc. 2006;1:755–68.
Article
CAS
PubMed
Google Scholar
Maeda H, Hatta T, Alim MA, Tsubokawa D, Mikami F, Matsubayashi M, et al. Establishment of a novel tick-Babesia experimental infection model. Sci Rep. 2016;6:37039.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krull C, Böhme B, Clausen P-H, Nijhof AM. Optimization of an artificial tick feeding assay for Dermacentor reticulatus. Parasites Vectors. 2017;10:60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Böhme B, Krull C, Clausen P-H, Nijhof AM. Evaluation of a semi-automated in vitro feeding system for Dermacentor reticulatus and Ixodes ricinus adults. Parasitol Res. 2018;117:565–70.
Article
PubMed
PubMed Central
Google Scholar
Romano D, Stefanini C, Canale A, Benelli G. Artificial blood feeders for mosquito and ticks—where from, where to? Acta Trop. 2018;183:43–56.
Article
PubMed
Google Scholar
Kröber T, Guerin PM. In vitro feeding assays for hard ticks. Trends Parasitol. 2007;23:445–9.
Article
PubMed
CAS
Google Scholar
Trentelman JJA, Kleuskens JAGM, van de Crommert J, Schetters TPM. A new method for in vitro feeding of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae: a valuable tool for tick vaccine development. Parasites Vectors. 2017;10:153.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mihajlović J, Hovius JWR, Sprong H, Bogovič P, Postma MJ, Strle F. Cost-effectiveness of a potential anti-tick vaccine with combined protection against Lyme borreliosis and tick-borne encephalitis in Slovenia. Ticks Tick Borne Dis. 2019;10:63–71.
Article
PubMed
Google Scholar
Plotkin SA. Need for a new Lyme disease vaccine. N Engl J Med. 2016;375:911–3.
Article
PubMed
Google Scholar