This nationwide survey, conducted more than 30 years after the first national survey by the WHO, determined the geographical distribution of schistosomiasis and other IHs in Sudan, and also revealed important epidemiological findings, particularly related to latrine status and risk behaviours such as open defecation. The overall prevalence was 5.2% for S. haematobium, 0.06% for S. mansoni and 5.47% for IHs in Sudan. STH prevalence was 0.2%, indicating that it is not important from a public health perspective. These results are consistent with those of recent studies [29, 30] conducted in some states of South Sudan bordering Sudan, where the overall prevalence of S. haematobium was 3.0%, and that of S. mansoni was 0.2%. Boys tended to be more frequently and heavily infected than girls, which was consistent with prior studies.
This nationwide survey further refined the methodology of existing surveys in Sudan. The geographical foci of schistosomiasis were identified by dividing districts into ecological zones, and sufficient sample sizes and random sampling made it possible to estimate precise prevalence at the state level, which is critical for better design and monitoring of control programmes and their progress.
The results of federal-level and independent quality control demonstrated that the laboratory examinations in this survey were of high quality. Fewer than ten examination results (0.01%) from laboratory technicians were found to be mismatched by federal or independent supervisors. Recruiting experienced experts for state laboratories, most of whom were senior laboratory technicians at state hospitals, led to the high-quality examination results.
It is worth noting that the hyper-endemicity of schistosomiasis was concentrated in fragile and border states. East Darfur (18.3%) and South Darfur (15.4%) States, which border Chad, the Central African Republic and Congo, are the most insecure areas in Sudan due to frequent conflicts, and diverse groups of development partners are working to control and stabilise these areas. Urgent measures should be taken to control the high prevalence of schistosomiasis and to disrupt its transmission in these unstable states. Darfur, South Kordofan, and White Nile States border South Sudan, and migration or human mobilization frequently occurs across these borders [29, 30]. Collaboration between both governments and among development partners working in each country is required for designing and implementing control programmes, and joint efforts are required to disrupt disease transmission and to sustain control effects.
Although this was a cross-sectional study on schistosomiasis and IHs, the results demonstrate the potential contribution of latrine improvement, open defecation eradication and reductions in the likelihood of coming into contact with polluted water. The importance of water and sanitation improvements is well recognised as a key element of NTD control strategies [31]. However, control programmes are often limited to preventive chemotherapy in practice, partly because evidence is lacking regarding the possible impacts of improved water and sanitation on NTD infections [15,16,17]. The findings of higher odds of infection among children without a household or school latrine and among those who frequently come into contact with contaminated water suggest that mere anthelmintic drug administration neither sufficiently controls or eliminates these diseases nor has a sustained effect. Incorporating WASH components into control programmes will accelerate breaking the transmission cycle and promote more sustained outcomes. This study provides insight into possible ways to design programmes to effectively reduce infections by illustrating the potential of diverse, innovative ways to disrupt the transmission cycle. For instance, building small stations with locally available materials at low cost for doing laundry or watering livestock near rivers or streams could help children to avoid contact with polluted water. In many villages, we observed residents living on both sides of a stream or river crossing it on foot or wading in the water to travel in traditional boats frequently, for purposes including agricultural activities and going to school. Therefore, inter-sectoral collaboration between the WASH and NTD sectors will be vital for designing and implementing control and elimination programmes suitable for each local context [16].
This study also suggests that a tremendous number of people would receive appropriate MDA interventions if those interventions are designed at smaller units than the district level, and the potential to avoid unnecessary mass treatment is no less important. Using the WHO protocol [32], tens of thousands of people living in highly endemic areas would not receive treatment, and other people not in need of treatment would be treated, as was the case in Senegal [18]. The sample size for schistosomiasis was larger than would have been obtained using the WHO methodology; however, this novel method would result in more targeted and cost-effective MDA for schistosomiasis.
We encountered difficulties in accessing target schools in several unstable states, such as Central Darfur, South Kordofan and West Kordofan, where surveys were delayed and some schools had to be replaced with others due to security issues. The parents of five girls’ schools in Red Sea State refused to participate in the survey, due to their opinion that it was unacceptable to submit samples from their daughters, and we thus replaced those schools with others. However, the overall proportion of schools replaced was less than 0.5% of the total number of target schools. This experience underscores the importance of community engagement prior to the survey as a way to increase the likelihood of parents allowing specimens from their children to be collected and examined. Conducting health education campaigns can be a good example of this. This was particularly important in some rural areas of Sudan, where there were rumours that the nationwide survey was intended to harm community members or that the treatment would cause women to be infertile. Extensive efforts were made to recruit a sufficient number of data collectors and laboratory workers, in particular to avoid placing a burden on the existing health system, since most of them were employees in the public sector, either at state hospitals or the state Ministries of Health. By temporarily recruiting 655 experienced people, we completed this large-scale survey within ten weeks. Despite the short period allowed for the survey, the high profile of supervisors for intensive monitoring and supervision made it possible to undertake an intense implementation of nationwide data collection and examination of specimens.
In this study, the use of random sampling may have resulted in slightly lower prevalence estimates. However, a previous study [24] indicated that health workers were not always well-informed about where schistosomiasis was most prevalent, and treatment decisions based on purposively-selected villages therefore did not systematically result in more treatments than those based on randomly-selected villages. Another limitation of this study is that we could not directly observe water sources and latrines at the household level due to time and workforce constraints. However, doing so should be considered for the next round of the survey.