Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010;85:328–45.
Article
CAS
PubMed
Google Scholar
Hemingway J. Resistance: a problem without an easy solution. Pesticide Biochem Phys. 2018;151:73–5.
Article
CAS
Google Scholar
Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils—a review. Food Chem Toxicol. 2008;46:446–75.
Article
CAS
PubMed
Google Scholar
Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod. 2015;76:174–87.
Article
CAS
Google Scholar
Vera SS, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F, Stashenko EE, Duque Luna JE. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2014;113:2647–54.
Article
PubMed
Google Scholar
Murugan K, Kumar PK, Kovendan K, Amerasan D, Subrmaniam J, Hwang J-S. Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2012;111:1757–69.
Article
PubMed
Google Scholar
Araujo AFO, Ribeiro-Paes JT, Deus JT, Cavalcanti SCH, Nunes RS, Alves PB, et al. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Mem Inst Oswaldo Cruz. 2016;111:443–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Warikoo R, Ray A, Sandhu JK, Samal R, Wahab N, Kumar S. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L. Asian Pac J Trop Biomed. 2012;2:152–5.
Article
PubMed
PubMed Central
Google Scholar
Campolo O, Romeo FV, Algeri GM, Laudani F, Malacrino A, Timpanaro N, et al. Larvicidal effects of four citrus peel essential oils against the arbovirus vector Aedes albopictus (Diptera: Culicidae). J Econ Entomol. 2016;109:360–5.
Article
CAS
PubMed
Google Scholar
Mdoe FP, Cheng SS, Lyaruu L, Nkwengulila G, Chang ST, Kweka EJ. Larvicidal efficacy of Cryptomeria japonica leaf essential oils against Anopheles gambiae. Parasit Vectors. 2014;7:426.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carvalho AF, Melo VM, Craveiro AA, Machado MI, Bantim MB, Rabelo EF. Larvicidal activity of the essential oil from Lippia sidoides Cham. against Aedes aegypti linn. Mem Inst Oswaldo Cruz. 2003;98(4):569–71.
Article
CAS
PubMed
Google Scholar
Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem. 2004;52:4395–400.
Article
CAS
PubMed
Google Scholar
Soonwera M, Phasomkusolsil S. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitol Res. 2016;115:1691–703.
Article
PubMed
Google Scholar
Sukumar K, Perich MJ, Boobar LR. Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc. 1991;7:210–37.
CAS
PubMed
Google Scholar
Enan E. Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C Toxicol Pharmacol. 2001;130:325–37.
Article
CAS
PubMed
Google Scholar
Lopez MD, Pascual-Villalobos MJ. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crop Prod. 2010;31:284–8.
Article
CAS
Google Scholar
Reynolds SE. The cuticle, growth and moulting in insects: the essential background to the action of acylurea insecticides. Pesticide Sci. 1987;20:131–46.
Article
CAS
Google Scholar
Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 2010;29:913–20.
Article
CAS
Google Scholar
Belzile AS, Majerus SL, Podeszfinski C, Guillet G, Durst T, Arnason JT. Dillapiol derivatives as synergists: structure-activity relationship analysis. Pesticide Biochem Phys. 2000;66:33–40.
Article
CAS
Google Scholar
Pavela R, Benelli G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–7.
Article
CAS
PubMed
Google Scholar
Shank JL. Encapsulating eg dyes, drugs, chemicals, adhesives etc—using microorganisms eg fungi, yeast by forming large fat globules within cell wall. Patent US498208-B; 1976.
Bishop JR, Nelson G, Lamb J. Microencapsulation in yeast cells. J Microencapsul. 1998;15:761–73.
Article
CAS
PubMed
Google Scholar
Souza RS, Diaz-Albiter HM, Dillon VM, Dillon RJ, Genta FA. Digestion of yeasts and beta-1,3-glucanases in mosquito larvae: physiological and biochemical considerations. PLoS ONE. 2016;11:e0151403.
Article
PubMed
PubMed Central
CAS
Google Scholar
WHO. Guidelines for laboratory and field testing of mosquito larvicides. Geneva: World Health Organization; 2005.
Google Scholar
Paramera EI, Karathanos VT, Konteles SJ. Yeast cells and yeast-based materials for microencapsulation. In: Gaonkar AG, Vasisht N, Khare AR, Sobel R, editors. Microencapsulation in the food industry. San Diego: Academic Press; 2014. p. 267–81.
Google Scholar
Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Álvarez JA. Chemical composition of mandarin (C. reticulata L.), grapefruit (C. paradisi L.), lemon (C. limon L.) and orange (C. sinensis L.) essential oils. J Essent Oil Bearing Plants. 2009;12:236–43.
Article
CAS
Google Scholar
Antonella A, Trozzi A, dAlcontres S, Cotroneo A. On the genuineness of citrus essential oils. Part XLVIII. The composition of volatile fraction of some varieties of sweet orange oils. J Essent Oil Res. 1996;8:159–70.
Article
Google Scholar
Essam Abdel SS, Deon Vahid C, Bruce B, Mohamed Wagdy FY, Hoda Abdel WA, Abdel Hamid M. Efficacy of botanical extracts from Callitris glaucophylla, against Aedes aegypti and Culex annulirostris mosquitoes. Trop Biomed. 2006;23:180–5.
CAS
PubMed
Google Scholar
Dias CN, Moraes DF. Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: review. Parasitol Res. 2014;113:565–92.
Article
PubMed
Google Scholar
Cheng S-S, Chang H-T, Chang S-T, Tsai K-H, Chen W-J. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol. 2003;89:99–102.
Article
CAS
PubMed
Google Scholar
Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnasorn C. Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health. 2005;36:1412–22.
PubMed
Google Scholar
Ravi Kiran S, Bhavani K, Sita Devi P, Rajeswara Rao BR, Janardhan Reddy K. Composition and larvicidal activity of leaves and stem essential oils of Chloroxylon swietenia DC against Aedes aegypti and Anopheles stephensi. Bioresour Technol. 2006;97:2481–4.
Article
CAS
PubMed
Google Scholar
Tennyson S, Samraj DA, Jeyasundar D, Chalieu K. Larvicidal efficacy of plant oils against the dengue vector Aedes aegypti (L.) (Diptera: Culicidae). Middle East J Sci Res. 2013;13:64–8.
Google Scholar
Cavalcanti ES, Morais SM, Lima MA, Santana EW. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004;99:541–4.
Article
CAS
PubMed
Google Scholar
Kumar S, Warikoo R, Mishra M, Seth A, Wahab N. Larvicidal efficacy of the Citrus limetta peel extracts against Indian strains of Anopheles stephensi Liston and Aedes aegypti L. Parasitol Res. 2012;111:173–8.
Article
PubMed
Google Scholar
Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004;34:653–65.
Article
CAS
PubMed
Google Scholar
Souza RS, Virginio F, Riback TIS, Suesdek L, Barufi JB, Genta FA. Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Front Physiol. 2019;10:152.
Article
PubMed
PubMed Central
Google Scholar
WHO. Larvae source management—a supplementary measure for malaria vector control. An operational manual. Geneva: World Health Organization; 2013.
Google Scholar
Carvalho FD, Moreira LA. Why is Aedes aegypti Linnaeus so successful as a species? Neotrop Entomol. 2017;46:243–55.
Article
CAS
PubMed
Google Scholar
Carvalho MS, Honorio NA, Garcia LMT, Carvalho LCS. Aedes aegypti control in urban areas: a systemic approach to a complex dynamic. PLoS Negl Trop Dis. 2017;11:e0005632.
Article
PubMed
PubMed Central
Google Scholar
Rezende GL, Martins AJ, Gentile C, Farnesi LC, Pelajo-Machado M, Peixoto AA, et al. Embryonic desiccation resistance in Aedes aegypti: presumptive role of the chitinized serosal cuticle. BMC Dev Biol. 2008;8:82–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:e0005625.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zogo B, Tchiekoi BNC, Koffi AA, Dahounto A, Ahoua Alou LP, Dabiré RK, et al. Impact of sunlight exposure on the residual efficacy of biolarvicides Bacillus thuringiensis israelensis and Bacillus sphaericus against the main malaria vector, Anopheles gambiae. Malar J. 2019;18:55–64.
Article
PubMed
PubMed Central
Google Scholar
Silva AS, Lobo KS, Da Silva JS, Vale CFS, Tadei WP, Pineiro VCS. Influence of abiotic factors on the effectiveness of Bacillus thuringiensis israelensis (Berliner, 1911) against larvae of Aedes aegypti (Linnaeus, 1762). Rev Cubana Med Trop. 2014;66:174–90.
Google Scholar
Scholte E-J, Takken W, Knols BGJ, Samson RA. Entomopathogenic fungi for mosquito control: a review. J Insect Sci. 2004;4:19–43.
Article
PubMed
PubMed Central
Google Scholar
Mains JW, Brelsfoard CL, Dobson SL. Male mosquitoes as vehicles for insecticide. PLoS Negl Trop Dis. 2015;9:e0003406.
Article
PubMed
PubMed Central
CAS
Google Scholar
Itoh T, Kawada H, Abe A, Eshita Y, Rongsriyam Y, Igarashi A. Utilization of bloodfed females of Aedes aegypti as a vehicle for the transfer of the insect growth regulator pyriproxyfen to larval habitats. J Am Mosq Control Assoc. 1994;10:344–7.
CAS
PubMed
Google Scholar
Ferreira SG, Conceicao VS, Gouveia NS, Santos GS, Santos RL, Lira AA, et al. An environmentally safe larvicide against Aedes aegypti based on in situ gelling nanostructured surfactant systems containing an essential oil. J Colloid Interface Sci. 2015;456:190–6.
Article
CAS
PubMed
Google Scholar
Kavetsou E, Koutsoukos S, Daferera D, Polissiou MG, Karagiannis D, Perdikis DC, et al. Encapsulation of Mentha pulegium essential oil in yeast cell microcarriers: an approach to environmentally friendly pesticides. J Agric Food Chem. 2019;67:4746–53.
Article
CAS
PubMed
Google Scholar