Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–16.
CAS
PubMed
Google Scholar
Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015;36:161–78.
CAS
PubMed
Google Scholar
Gould N, Doulias P-T, Tenopoulou M, Raju K, Ischiropoulos H. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J Biol Chem. 2013;288:26473–9.
CAS
PubMed
PubMed Central
Google Scholar
Radi R. Peroxynitrite, a stealthy biological oxidant. J Biol Chem. 2013;288:26464–72.
CAS
PubMed
PubMed Central
Google Scholar
Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol. 2018;14:618–25.
CAS
PubMed
Google Scholar
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.
CAS
PubMed
PubMed Central
Google Scholar
Brasil TR, Freire-de-Lima CG, Morrot A, Vetö Arnholdt AC. Host-Toxoplasma gondii coadaptation leads to fine tuning of the immune response. Front Immunol. 2017;8:1080.
PubMed
PubMed Central
Google Scholar
Gutierrez FRSS, Mineo TWPP, Pavanelli WR, Guedes PMMM, Silva JS. The effects of nitric oxide on the immune system during Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz. 2009;104(Suppl. 1):236–45.
CAS
PubMed
Google Scholar
Lopez-Romero G, Quintero J, Astiazarán-García H, Velazquez C. Host defences against Giardia lamblia. Parasite Immunol. 2015;37:394–406.
CAS
PubMed
Google Scholar
Olekhnovitch R, Bousso P. Induction, Propagation, and activity of host nitric oxide: lessons from Leishmania infection. Trends Parasitol. 2015;31:653–64.
CAS
PubMed
Google Scholar
Ahmed SF, Oswald IP, Caspar P, Hieny S, Keefer L, Sher A, et al. Developmental differences determine larval susceptibility to nitric oxide-mediated killing in a murine model of vaccination against Schistosoma mansoni. Infect Immun. 1997;65:219–26.
CAS
PubMed
PubMed Central
Google Scholar
James SL, Glaven J. Macrophage cytotoxicity against schistosomula of Schistosoma mansoni involves arginine-dependent production of reactive nitrogen intermediates. J Immunol. 1989;143:4208–12.
CAS
PubMed
Google Scholar
Sher A, James SL, Simpson AJ, Lazdins JK, Meltzer MS. Macrophages as effector cells of protective immunity in murine schistosomiasis. III. Loss of susceptibility to macrophage-mediated killing during maturation of S. mansoni schistosomula from the skin to the lung stage. J Immunol. 1982;128:1876–9.
Shen J, Lai D-H, Wilson RA, Chen Y-F, Wang L-F, Yu Z-L, et al. Nitric oxide blocks the development of the human parasite Schistosoma japonicum. Proc Natl Acad Sci USA. 2017;114:10214–9.
CAS
PubMed
Google Scholar
Pearce EJ, James SL. Post lung-stage schistosomula of Schistosoma mansoni exhibit transient susceptibility to macrophage-mediated cytotoxicity in vitro that may relate to late phase killing in vivo. Parasite Immunol. 1986;8:513–27.
CAS
PubMed
Google Scholar
Skelly PJ, Stein LD, Shoemaker CB. Expression of Schistosoma mansoni genes involved in anaerobic and oxidative glucose metabolism during the cercaria to adult transformation. Mol Biochem Parasitol. 1993;60:93–104.
CAS
PubMed
Google Scholar
James SL, Cheever AW, Caspar P, Wynn TA. Inducible nitric oxide synthase-deficient mice develop enhanced type 1 cytokine-associated cellular and humoral immune responses after vaccination with attenuated Schistosoma mansoni cercariae but display partially reduced resistance. Infect Immun. 1998;66:3510–8.
CAS
PubMed
PubMed Central
Google Scholar
Wynn TA, Oswald IP, Eltoum IA, Caspar P, Lowenstein CJ, Lewis FA, et al. Elevated expression of Th1 cytokines and nitric oxide synthase in the lungs of vaccinated mice after challenge infection with Schistosoma mansoni. J Immunol. 1994;153:5200–9.
CAS
PubMed
Google Scholar
Zhang R, Yoshida A, Kumagai T, Kawaguchi H, Maruyama H, Suzuki T, et al. Vaccination with calpain induces a Th1-biased protective immune response against Schistosoma japonicum. Infect Immun. 2001;69:386–91.
CAS
PubMed
PubMed Central
Google Scholar
Guglielmo S, Cortese D, Vottero F, Rolando B, Kommer VP, Williams DL, et al. New praziquantel derivatives containing NO-donor furoxans and related furazans as active agents against Schistosoma mansoni. Eur J Med Chem. 2014;84:135–45.
CAS
PubMed
PubMed Central
Google Scholar
Fabre V, Beiting DP, Bliss SK, Gebreselassie NG, Gagliardo LF, Lee NA, et al. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J Immunol. 2009;182:1577–83.
CAS
PubMed
PubMed Central
Google Scholar
Gebreselassie NG, Moorhead AR, Fabre V, Gagliardo LF, Lee NA, Lee JJ, et al. Eosinophils preserve parasitic nematode larvae by regulating local immunity. J Immunol. 2012;188:417–25.
CAS
PubMed
Google Scholar
Kołodziej-Sobocińska M, Dziemian E, Machnicka-Rowińska B. Inhibition of nitric oxide production by aminoguanidine influences the number of Trichinella spiralis parasites in infected “low responders” (C57BL/6) and “high responders” (BALB/c) mice. Parasitol Res. 2006;99:194–6.
PubMed
Google Scholar
Gupta R, Bajpai P, Tripathi LM, Srivastava VMLL, Jain SK, Misra-Bhattacharya S. Macrophages in the development of protective immunity against experimental Brugia malayi infection. Parasitology. 2004;129:311–23.
CAS
PubMed
Google Scholar
Rajan TV, Porte P, Yates JA, Keefer L, Shultz LD, Keeper L, et al. Role of nitric oxide in host defense against an extracellular, metazoan parasite, Brugia malayi. Infect Immun. 1996;64:3351–3.
CAS
PubMed
PubMed Central
Google Scholar
Rodrigues RM, Gonçalves ALR, Silva NM, Cardoso CR de B, Araújo NR, Coutinho LB, et al. Inducible nitric oxide synthase controls experimental Strongyloides infection. Parasite Immunol. 2018;40:e12576.
Ruano AL, López-Abán J, Fernández-Soto P, Lane de Melo A, Muro A. Treatment with nitric oxide donors diminishes hyperinfection by Strongyloides venezuelensis in mice treated with dexamethasone. Acta Trop. 2015;152:90–5.
Alonso-Trujillo J, Rivera-Montoya I, Rodríguez-Sosa M, Terrazas LI. Nitric oxide contributes to host resistance against experimental Taenia crassiceps cysticercosis. Parasitol Res. 2007;100:1341–50.
PubMed
Google Scholar
Horák P, Dvořák J, Kolářová L, Trefil L. Trichobilharzia regenti, a pathogen of the avian and mammalian central nervous systems. Parasitology. 1999;119:577–81.
PubMed
Google Scholar
Kolářová L, Horák P, Skírnisson K, Marečková H, Doenhoff M. Cercarial dermatitis, a neglected allergic disease. Clin Rev Allergy Immunol. 2013;45:63–74.
PubMed
Google Scholar
Macháček T, Turjanicová L, Bulantová J, Hrdý J, Horák P, Mikeš L. Cercarial dermatitis: a systematic follow-up study of human cases with implications for diagnostics. Parasitol Res. 2018;117:3881–95.
PubMed
Google Scholar
Caron Y, Cabaraux A, Marechal F, Losson B. Swimmer’s itch in Belgium: first recorded outbreaks, molecular identification of the parasite species and intermediate hosts. Vector Borne Zoonotic Dis. 2017;17:190–4.
PubMed
Google Scholar
De Liberato C, Berrilli F, Bossù T, Magliano A, Montalbano Di Filippo M, Di Cave D, et al. Outbreak of swimmer’s itch in Central Italy: description, causative agent and preventive measures. Zoonoses Public Health. 2019;66:377–81.
Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev. 2015;28:165–90.
PubMed
PubMed Central
Google Scholar
Tracz ES, Al-Jubury A, Buchmann K, Bygum A. Outbreak of swimmer’s itch in Denmark. Acta Derm Venereol. 2019;99:1116–20.
PubMed
Google Scholar
Dolečková K, Kašný M, Mikeš L, Cartwright J, Jedelský P, Schneider EL, et al. The functional expression and characterisation of a cysteine peptidase from the invasive stage of the neuropathogenic schistosome Trichobilharzia regenti. Int J Parasitol. 2009;39:201–11.
PubMed
PubMed Central
Google Scholar
Kouřilová P, Syrůček M, Kolářová L. The severity of mouse pathologies caused by the bird schistosome Trichobilharzia regenti in relation to host immune status. Parasitol Res. 2004;93:8–16.
PubMed
Google Scholar
Kouřilová P, Hogg KG, Kolářová L, Mountford AP. Cercarial dermatitis caused by bird schistosomes comprises both immediate and late phase cutaneous hypersensitivity reactions. J Immunol. 2004;172:3766–74.
PubMed
Google Scholar
Majer M, Macháček T, Súkeníková L, Hrdý J, Horák P. The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunol. 2020;42:e12710.
CAS
PubMed
Google Scholar
Hrádková K, Horák P. Neurotropic behaviour of Trichobilharzia regenti in ducks and mice. J Helminthol. 2002;76:137–41.
PubMed
Google Scholar
Lichtenbergová L, Lassmann H, Jones MMK, Kolářová L, Horák P. Trichobilharzia regenti: host immune response in the pathogenesis of neuroinfection in mice. Exp Parasitol. 2011;128:328–35.
PubMed
Google Scholar
Bulantová J, Macháček T, Panská L, Krejčí F, Karch J, Jährling N, et al. Trichobilharzia regenti (Schistosomatidae): 3D imaging techniques in characterization of larval migration through the CNS of vertebrates. Micron. 2016;83:62–71.
PubMed
Google Scholar
Dvořák J, Delcroix M, Rossi A, Vopálenský V, Pospíšek M, Šedinová M, et al. Multiple cathepsin B isoforms in schistosomula of Trichobilharzia regenti: identification, characterisation and putative role in migration and nutrition. Int J Parasitol. 2005;35:895–910.
PubMed
Google Scholar
Dvořáková H, Leontovyč R, Macháček T, O’Donoghue AJ, Šedo O, Zdráhal Z, et al. Isoforms of cathepsin B1 in neurotropic schistosomula of Trichobilharzia regenti differ in substrate preferences and a highly expressed catalytically inactive paralog binds cystatin. Front Cell Infect Microbiol. 2020;10:66.
PubMed
PubMed Central
Google Scholar
Leontovyč R, Young ND, Korhonen PK, Hall RS, Bulantová J, Jeřábková V, et al. Molecular evidence for distinct modes of nutrient acquisition between visceral and neurotropic schistosomes of birds. Sci Rep. 2019;9:1374.
Google Scholar
Macháček T, Panská L, Dvořáková H, Horák P. Nitric oxide and cytokine production by glial cells exposed in vitro to neuropathogenic schistosome Trichobilharzia regenti. Parasit Vectors. 2016;9:579.
PubMed
PubMed Central
Google Scholar
Shi SR, Cote RJ, Taylor CR. Antigen retrieval immunohistochemistry: past, present, and future. J Histochem Cytochem. 1997;45:327–43.
CAS
PubMed
Google Scholar
Tracey WR, Tse J, Carter G. Lipopolysaccharide-induced changes in plasma nitrite and nitrate concentrations in rats and mice: pharmacological evaluation of nitric oxide synthase inhibitors. J Pharmacol Exp Ther. 1995;272:1011–5.
CAS
PubMed
Google Scholar
Chanová M, Bulantová J, Máslo P, Horák P. In vitro cultivation of early schistosomula of nasal and visceral bird schistosomes (Trichobilharzia spp., Schistosomatidae). Parasitol Res. 2009;104:1445–52.
Basch PF. Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol. 1981;67:179–85.
Lomonosova EE, Kirsch M, Rauen U, de Groot H. The critical role of Hepes in SIN-1 cytotoxicity, peroxynitrite versus hydrogen peroxide. Free Radic Biol Med. 1998;24:522–8.
CAS
PubMed
Google Scholar
Gold D. Assessment of the viability of Schistosoma mansoni schistosomula by comparative uptake of various vital dyes. Parasitol Res. 1997;83:163–9.
CAS
PubMed
Google Scholar
Howe S, Zöphel D, Subbaraman H, Unger C, Held J, Engleitner T, et al. Lactate as a novel quantitative measure of viability in Schistosoma mansoni drug sensitivity assays. Antimicrob Agents Chemother. 2015;59:1193–9.
PubMed
PubMed Central
Google Scholar
Nussbaum-Krammer CI, Neto MF, Brielmann RM, Pedersen JS, Morimoto RI. Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans. J Vis Exp. 2015;95:52321.
Ressurreição M, Elbeyioglu F, Kirk RS, Rollinson D, Emery AM, Page NM, et al. Molecular characterization of host-parasite cell signalling in Schistosoma mansoni during early development. Sci Rep. 2016;6:35614.
PubMed
PubMed Central
Google Scholar
Blažová K, Horák P. Trichobilharzia regenti: the developmental differences in natural and abnormal hosts. Parasitol Int. 2005;54:167–72.
PubMed
Google Scholar
Haas W, Pietsch U. Migration of Trichobilharzia ocellata schistosomula in the duck and in the abnormal murine host. Parasitol Res. 1991;77:642–4.
CAS
PubMed
Google Scholar
Olivier L. Observations on the migration of avian schistosomes in mammals previously unexposed to cercariae. J Parasitol. 1953;39:237–46.
CAS
PubMed
Google Scholar
Ramaswamy K, He Y-XX, Salafsky B. ICAM-1 and iNOS expression increased in the skin of mice after vaccination with γ-irradiated cercariae of Schistosoma mansoni. Exp Parasitol. 1997;86:118–32.
Frank S, Madlener M, Pfeilschifter J, Werner S. Induction of inducible nitric oxide synthase and its corresponding tetrahydrobiopterin-cofactor-synthesizing enzyme GTP-cyclohydrolase I during cutaneous wound repair. J Invest Dermatol. 1998;111:1058–64.
CAS
PubMed
Google Scholar
Frank S, Kämpfer H, Wetzler C, Pfeilschifter J. Nitric oxide drives skin repair: novel functions of an established mediator. Kidney Int. 2002;61:882–8.
CAS
PubMed
Google Scholar
Bourke CD, Prendergast CT, Sanin DE, Oulton TE, Hall RJ, Mountford AP. Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection. Int J Parasitol. 2015;45:215–24.
CAS
PubMed
PubMed Central
Google Scholar
Leontovyč R, Young ND, Korhonen PK, Hall RS, Tan P, Mikeš L, et al. Comparative transcriptomic exploration reveals unique molecular adaptations of neuropathogenic Trichobilharzia to invade and parasitize its avian definitive host. PLoS Negl Trop Dis. 2016;10:e0004406.
PubMed
PubMed Central
Google Scholar
van Oordt BEP, Tielens AGM, van den Bergh SG. The energy metabolism of Schistosoma mansoni during its development in the hamster. Parasitol Res. 1988;75:31–5.
PubMed
Google Scholar
Thompson DP, Morrison DD, Pax RA, Bennett JL. Changes in glucose metabolism and cyanide sensitivity in Schistosoma mansoni during development. Mol Biochem Parasitol. 1984;13:39–51.
CAS
PubMed
Google Scholar
Horemans AMC, Tielens AGM, van den Bergh SG. The reversible effect of glucose on the energy metabolism of Schistosoma mansoni cercariae and schistosomula. Mol Biochem Parasitol. 1992;51:73–9.
CAS
PubMed
Google Scholar
Richardson AR, Libby SJ, Fang FC. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science. 2008;319:1672–6.
CAS
PubMed
Google Scholar
Brown GC, McBride AG, Fox EJ, McNaught KSP, Borutaite V. Nitric oxide and oxygen metabolism. Biochem Soc Trans. 1997;25:901–4.
CAS
PubMed
Google Scholar
Brunori M, Giuffrè A, Sarti P, Stubauer G, Wilson MT. Nitric oxide and cellular respiration. Cell Mol Life Sci. 1999;56:549–57.
CAS
PubMed
Google Scholar
Von Kruger MA, Gazzinelli G, Figueiredo EA, Pellegrino J. Oxygen uptake and lactate production by Schistosoma mansoni cercaria, cercarial body and tail, and schistosomule. Comp Biochem Physiol B. 1978;60:41–6.
Google Scholar
Wright N. A review of the actions of nitric oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci. 2019;6:146–74.
PubMed
PubMed Central
Google Scholar
Reuter M, Kreshchenko N. Flatworm asexual multiplication implicates stem cells and regeneration. Can J Zool. 2004;82:334–56.
Google Scholar
Kohn AB, Moroz LL, Lea JM, Greenberg RM. Distribution of nitric oxide synthase immunoreactivity in the nervous system and peripheral tissues of Schistosoma mansoni. Parasitology. 2001;122:87–92.
PubMed
Google Scholar
Kohn AB, Lea JM, Moroz LL, Greenberg RM. Schistosoma mansoni: use of a fluorescent indicator to detect nitric oxide and related species in living parasites. Exp Parasitol. 2006;113:130–3.
CAS
PubMed
Google Scholar
Long X-C, Bahgat M, Chlichlia K, Ruppel A, Li Y-L. Detection of inducible nitric oxide synthase in Schistosoma japonicum and S. mansoni. J Helminthol. 2004;78:47–50.
Colasanti M, Salvati L, Venturini G, Ascenzi P, Gradoni L. Cysteine protease as a target for nitric oxide in parasitic organisms. Trends Parasitol. 2001;17:575.
CAS
PubMed
Google Scholar
Grote A, Caffrey CR, Rebello KM, Smith D, Dalton JP, Lustigman S. Cysteine proteases during larval migration and development of helminths in their final host. PLoS Negl Trop Dis. 2018;12:e0005919.
PubMed
PubMed Central
Google Scholar
Bocedi A, Gradoni L, Menegatti E, Ascenzi P. Kinetics of parasite cysteine proteinase inactivation by NO-donors. Biochem Biophys Res Commun. 2004;315:710–8.
CAS
PubMed
Google Scholar
Caffrey CR, Goupil L, Rebello KM, Dalton JP, Smith D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl Trop Dis. 2018;12:e0005840.
PubMed
PubMed Central
Google Scholar
Dunne DW, Cooke A. A worm’s eye view of the immune system: consequences for evolution of human autoimmune disease. Nat Rev Immunol. 2005;5:420–6.
CAS
PubMed
Google Scholar
Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol. 2013;4:39.
PubMed
PubMed Central
Google Scholar
Rai G, Sayed AA, Lea WA, Luecke HF, Chakrapani H, Prast-Nielsen S, et al. Structure mechanism insights and the role of nitric oxide donation guide the development of oxadiazole-2-oxides as therapeutic agents against schistosomiasis. J Med Chem. 2009;52:6474–83.
CAS
PubMed
PubMed Central
Google Scholar
Sadeghi-Hashjin G, Naem S. Parasiticidal effects of peroxynitrite on ovine liver flukes in vitro. J Helminthol. 2001;75:73–6.
CAS
PubMed
Google Scholar
Thomas GR, McCrossan M, Selkirk ME. Cytostatic and cytotoxic effects of activated macrophages and nitric oxide donors on Brugia malayi. Infect Immun. 1997;65:2732–9.
CAS
PubMed
PubMed Central
Google Scholar
Hockley DJ, McLaren DJ. Schistosoma mansoni: changes in the outer membrane of the tegument during development from cercaria to adult worm. Int J Parasitol. 1973;3:13–20.
CAS
PubMed
Google Scholar
Stirewalt MA. Schistosoma mansoni: cercaria to schistosomule. Adv Parasitol. 1974;12:115–82.
CAS
PubMed
Google Scholar
Macháček T, Krčmářová V, Majer M, Dvořáková H, Panská L, Bulantová J, et al. Neuropathogenic bird schistosome Trichobilharzia regenti activates astrocytes and microglia of infected ducks and mice. In: XIII European Meeting on Glial Cells in Health and Disease, Edinburgh, UK; 2017. Abstract T14-092A.
Macháček T, Pankrác J, Majer M, Šteiger V, Immig K, Horák P. Dynamics of immune cells in the CNS of mice infected by Trichobilharzia regenti (Schistosomatidae): implications for parasite clearance. In: Molecular and Cellular Biology of Helminths XII, Hydra, Greece; 2018. Abstract 14.
Chen JW, Breckwoldt MO, Aikawa E, Chiang G, Weissleder R. Myeloperoxidase-targeted imaging of active inflammatory lesions in murine experimental autoimmune encephalomyelitis. Brain. 2008;131:1123–33.
PubMed
PubMed Central
Google Scholar
Eiserich JP, Hristova M, Cross CE, Jones AD, Freeman BA, Halliwell B, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391:393–7.
CAS
PubMed
Google Scholar
Gaut JP, Byun J, Tran HD, Lauber WM, Carroll JA, Hotchkiss RS, et al. Myeloperoxidase produces nitrating oxidants in vivo. J Clin Invest. 2002;109:1311–9.
CAS
PubMed
PubMed Central
Google Scholar