Martinez AJ, Visvesvara GS. Free-living, amphizoic and opportunistic amebas. Brain Pathol. 1997;1:583–98.
Article
Google Scholar
Chomicz L, Padzik M, Graczyk Z, Starosciak B, Graczyk TK, Naprawska A, et al. Acanthamoeba castellanii: in vitro effects of selected biological, physical and chemical factors. Exp Parasitol. 2010;1:103–5.
Article
CAS
Google Scholar
Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite. 2015;22:10.
Article
PubMed
PubMed Central
Google Scholar
Walochnik J, Scheikl U, Haller-Schober EM. Twenty years of Acanthamoeba diagnostics in Austria. J Eukaryot Microbiol. 2015;1:3–11.
Article
Google Scholar
Padzik M, Hendiger E, Szaflik J, Chomicz L. Amoebae of the genus Acanthamoeba—pathological agents in humans. Postep Mikrobiol. 2017;56:429–39.
Google Scholar
Clarke B, Sinha A, Parmar DN, Sykakis E. Advances in the diagnosis and treatment of Acanthamoeba keratitis. J Ophthalmol. 2012;2012:484892.
Article
PubMed
PubMed Central
Google Scholar
Trabelsi H, Dendana F, Sellami A, Sellami H, Cheikhrouhou F, Neji S, et al. Pathogenic free-living amoebae: epidemiology and clinical review. Pathol Biol (Paris). 2012;6:399–405.
Article
Google Scholar
Lorenzo-Morales J, Martin-Navarro CM, Lopez-Arencibia A, Arnalich-Montiel F, Pinero JE, Valladares B. Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends Parasitol. 2013;4:181–7.
Article
Google Scholar
Chomicz L, Conn DB, Padzik M, Szaflik JP, Walochnik J, Zawadzki PJ, et al. Emerging threats for human health in Poland: pathogenic isolates from drug resistant Acanthamoeba keratitis monitored in terms of their in vitro dynamics and temperature adaptability. Biomed Res Int. 2015;2015:231285.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lonnen J, Kilvington S, Lam A, Heaselgrave W. 58 Biocidal efficacy of multipurpose contact lens disinfectant solutions against Acanthamoeba species. Cont Lens Anterior Eye. 2011;34:S30.
Article
Google Scholar
Padzik M, Chomicz L, Szaflik JP, Chruscikowska A, Perkowski K, Szaflik J. In vitro effects of selected contact lens care solutions on Acanthamoeba castellanii strains in Poland. Exp Parasitol. 2014;145(Suppl):S98–101.
Article
CAS
PubMed
Google Scholar
Niyyati M, Sasani R, Mohebali M, Ghazikhansari M, Kargar F, Hajialilo E, et al. Anti-Acanthamoeba effects of silver and gold nanoparticles and contact lenses disinfection solutions. Iran J Parasitol. 2018;2:180–5.
Google Scholar
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;1:177–82.
Article
CAS
Google Scholar
Rzeszutek J, Matysiak-Kucharek M, Czajka M, Sawicki K, Rachubik P, Kruszewski M, et al. Application of nanoparticles and nanomaterials in medicine. Hygeia Public Health. 2014;49:449–57.
Google Scholar
Said DE, Elsamad LM, Gohar YM. Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol Res. 2012;2:545–54.
Article
Google Scholar
Saad HA, Soliman MI, Azzam AM, Mostafa B. Antiparasitic activity of silver and copper oxide nanoparticles against Entamoeba histolytica and Cryptosporidium parvum cysts. J Egypt Soc Parasitol. 2015;3:593–602.
Google Scholar
Ullah I, Cosar G, Abamor ES, Bagirova M, Shinwari ZK, Allahverdiyev AM. Comparative study on the antileishmanial activities of chemically and biologically synthesized silver nanoparticles (AgNPs). 3 Biotech. 2018;2:98.
Article
Google Scholar
Sieniawska E. Activities of tannins—from in vitro studies to clinical trials. Nat Prod Commun. 2015;10:1877–84.
PubMed
Google Scholar
Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: a review. Crit Rev Food Sci Nutr. 1998;38:421–64.
Article
CAS
PubMed
Google Scholar
Athar M, Khan WA, Mukhtar H. Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Res. 1989;21:5784–8.
Google Scholar
Scalbert A, Monties B, Janin G. Tannins in wood: comparison of different estimation methods. J Agric Food Chem. 1989;5:1324–9.
Article
Google Scholar
Khan NS, Ahmad A, Hadi SM. Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chem Biol Interact. 2000;3:177–89.
Article
Google Scholar
Haslam E. Vegetable tannins—lessons of a phytochemical lifetime. Phytochemistry. 2007;22–24:2713–21.
Article
CAS
Google Scholar
Padzik M, Hendiger EB, Chomicz L, Grodzik M, Szmidt M, Grobelny J, et al. Tannic acid-modified silver nanoparticles as a novel therapeutic agent against Acanthamoeba. Parasitol Res. 2018;11:3519–25.
Article
Google Scholar
Borase HP, Patil CD, Sauter IP, Rott MB, Patil SV. Amoebicidal activity of phytosynthesized silver nanoparticles and their in vitro cytotoxicity to human cells. FEMS Microbiol Lett. 2013;2:127–31.
Article
CAS
Google Scholar
Orlowski P, Tomaszewska E, Gniadek M, Baska P, Nowakowska J, Sokolowska J, et al. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS ONE. 2014;9(8):e104113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aqeel Y, Siddiqui R, Anwar A, Shah MR, Khan NA. Gold nanoparticle conjugation enhances the antiacanthamoebic effects of chlorhexidine. Antimicrob Agents Chemother. 2015;3:1283–8.
Google Scholar
Zielinska M, Sawosz E, Grodzik M, Wierzbicki M, Gromadka M, Hotowy A, et al. Effect of heparan sulfate and gold nanoparticles on muscle development during embryogenesis. Int J Nanomed. 2011;6:3163–72.
CAS
Google Scholar
McBride J, Ingram PR, Henriquez FL, Roberts CW. Development of colorimetric microtiter plate assay for assessment of antimicrobials against Acanthamoeba. J Clin Microbiol. 2005;2:629–34.
Article
CAS
Google Scholar
Radford CF, Minassian DC, Dart JK. Acanthamoeba keratitis in England and Wales: incidence, outcome, and risk factors. Br J Ophthalmol. 2002;5:536–42.
Article
Google Scholar
Codling CE, Maillard JY, Russell AD. Aspects of the antimicrobial mechanisms of action of a polyquaternium and an amidoamine. J Antimicrob Chemother. 2003;5:1153–8.
Article
CAS
Google Scholar
Santodomingo-Rubido J, Mori O, Kawaminami S. Cytotoxicity and antimicrobial activity of six multipurpose soft contact lens disinfecting solutions. Ophthalmic Physiol Opt. 2006;5:476–82.
Article
Google Scholar
Kal A, Toker MI, Kaya S. The comparison of antimicrobial effectiveness of contact lens solutions. Int Ophthalmol. 2017;5:1103–14.
Article
Google Scholar
Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomed. 2007;2:129–41.
CAS
Google Scholar
Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;22:225103.
Article
CAS
Google Scholar
Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;5:2673–702.
Article
Google Scholar
Yan X, He B, Liu L, Qu G, Shi J, Hu L, et al. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics. 2018;4:557–64.
Article
Google Scholar
Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol. 2013;7:1181–200.
Article
CAS
Google Scholar
Behl G, Iqbal J, O’Reilly NJ, McLoughlin P, Fitzhenry L. Synthesis and characterization of poly(2-hydroxyethylmethacrylate) contact lenses containing chitosan nanoparticles as an ocular delivery system for dexamethasone sodium phosphate. Pharm Res. 2016;7:1638–48.
Article
CAS
Google Scholar
Liu S, Dozois MD, Chang CN, Ahmad A, Ng DL, Hileeto D, et al. Prolonged ocular retention of mucoadhesive nanoparticle eye drop formulation enables treatment of eye diseases using significantly reduced dosage. Mol Pharm. 2016;9:2897–905.
Article
CAS
Google Scholar
Willcox MDP, Hume EBH, Vijay AK, Petcavich R. Ability of silver-impregnated contact lenses to control microbial growth and colonisation. J Optometry. 2010;3:143–8.
Article
Google Scholar
Fazly Bazzaz BS, Khameneh B, Jalili-Behabadi MM, Malaekeh-Nikouei B, Mohajeri SA. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Cont Lens Anterior Eye. 2014;3:149–52.
Article
Google Scholar
Amos CF, George MD. Clinical and laboratory testing of a silver-impregnated lens case. Cont Lens Anterior Eye. 2006;5:247–55.
Article
Google Scholar
Anwar A, Chi Fung L, Anwar A, Jagadish P, Numan A, Khalid M, et al. Effects of shape and size of cobalt phosphate nanoparticles against Acanthamoeba castellanii. Pathogens. 2019;4:10.
Google Scholar
Anwar A, Mungroo MR, Anwar A, Sullivan WJ, Khan NA, Siddiqui R. Repositioning of guanabenz in conjugation with gold and silver nanoparticles against pathogenic amoebae Acanthamoeba castellanii and Naegleria fowleri. ACS Infect Dis. 2019;12:2039–46.
Article
CAS
Google Scholar
Grün A, Scheid P, Hauröder B, Emmerling C, Manz W. Assessment of the effect of silver nanoparticles on the relevant soil protozoan genus Acanthamoeba. J Plant Nutr Soil Sci. 2017;5:602–13.
Article
CAS
Google Scholar
Padzik M, Hendiger EB, Zochowska A, Szczepaniak J, Baltaza W, Pietruczuk-Padzik A, et al. Evaluation of in vitro effect of selected contact lens solutions conjugated with nanoparticles in terms of preventive approach to public health risk generated by Acanthamoeba strains. Ann Agric Environ Med. 2019;1:198–202.
Article
CAS
Google Scholar
Anwar A, Siddiqui R, Hussain MA, Ahmed D, Shah MR, Khan NA. Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole. Parasitol Res. 2018;1:265–71.
Article
Google Scholar
Anwar A, Numan A, Siddiqui R, Khalid M, Khan NA. Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii. Parasites Vectors. 2019;1:280.
Article
Google Scholar
Nishanthi R, Malathi S, John Paul S, Palani P. Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng. 2019;96:693–707.
Article
CAS
Google Scholar
Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructre Chem. 2019;1:1–9.
Google Scholar
Bilal M, Zhao Y, Rasheed T, Ahmed I, Hassan STS, Nawaz MZ, et al. Biogenic nanoparticle chitosan conjugates with antimicrobial, antibiofilm, and anticancer potentialities: development and characterization. Int J Environ Res Public Health. 2019;4:10.
Google Scholar
Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep. 2019;1:13071-y.
Article
CAS
Google Scholar
Kohan Baghkheirati E, Bagherieh-Najjar MB, Khandan Fadafan H, Abdolzadeh A. Synthesis and antibacterial activity of stable bio-conjugated nanoparticles mediated by walnut (Juglans regia) green husk extract. J Exp Nanosci. 2016;7:512–7.
Article
CAS
Google Scholar
Alomari AA, Kloub Fares KE, Moustafa NE. Green synthesis of assembled silver nanoparticles in nano capsules of Peganum harmala L. leaf extract. Antibacterial activity and conjugate investigation. Cogent Chem. 2018;4:1.
Article
CAS
Google Scholar