Skip to main content

Transmission potential of Mayaro virus by Aedes albopictus, and Anopheles quadrimaculatus from the USA

Abstract

Background

Mayaro virus (MAYV; Alphavirus, Togaviridae) is an emerging pathogen endemic in South American countries. The increase in intercontinental travel and tourism-based forest excursions has resulted in an increase in MAYV spread, with imported cases observed in Europe and North America. Intriguingly, no local transmission of MAYV has been reported outside South America, despite the presence of potential vectors.

Methods

We assessed the vector competence of Aedes albopictus from New York and Anopheles quadrimaculatus for MAYV.

Results

The results show that Ae. albopictus from New York and An. quadrimaculatus are competent vectors for MAYV. However, Ae. albopictus was more susceptible to infection. Transmission rates increased with time for both species, with rates of 37.16 and 64.44% for Ae. albopictus, and of 25.15 and 48.44% for An. quadrimaculatus, respectively, at 7 and 14 days post-infection.

Conclusions

Our results suggest there is a risk of further MAYV spread throughout the Americas and autochthonous transmission in the USA. Preventive measures, such as mosquito surveillance of MAYV, will be essential for early detection.

Background

Mayaro virus (MAYV; Togaviridae, Alphavirus) is an emerging virus first isolated in Trinidad in 1954 from the serum of febrile patients. Mayaro virus strains are grouped into three distinct genotypes: L (limited), N (new), and D (widely dispersed) [1,2,3,4]. Similar to other medically important alphaviruses, MAYV is a mosquito-borne arbovirus that causes fever, headache, myalgia, rash, and arthralgia of large joints and, occasionally, arthritis in humans [5]. New World primates of the families Cebidae and Callithricidae are considered to be potential natural reservoirs for the virus [6, 7]. The virus has also been found in a migrating bird, equids, anteaters, armadillos, opossums, and rodents [8, 9].

Endemic in South America countries, the frequency of Mayaro virus disease in humans has increased in number in recent years, and imported cases have been detected in previously unaffected areas, such as Europe and the USA [3]. Further expansion of MAYV range could be facilitated by global climate change, rapid urbanization and higher mobility of the population, lack of effective vector control, and spreading of vector populations to new geographic regions [5, 10, 11]. Different mosquito species have been found to be infected with the virus, including Mansonia venezuelensis, Haemagogus janthinomys, Sabethes spp., and Culex spp. [7, 10]. Moreover, Aedes albopictus, Aedes aegypti, Anopheles gambiae, Anopheles stephensi, Anopheles quadrimaculatus, and Culex quinquefasciatus are known to be competent vectors of MAYV [12,13,14].

Many travelers from MAYV endemic areas visit New York each year; however, to date there is no information available on the potential of local mosquitoes to transmit MAYV. To evaluate this risk, we infected Ae. albopictus (temperate strain) and An. quadrimaculatus with MAYV and evaluated their capacity to transmit the virus. Our results show that both mosquito species are competent vectors of MAYV, with Ae. albopictus being the more efficient vector.

Methods

Mosquitoes

A colony of unknown generations of An. quadrimaculatus (Orlando strain) was obtained from BEI Resources (MRA-139; https://www.beiresources.org/) and maintained at 27 °C under standard rearing conditions [15]. Larvae were maintained in plastic rectangular flat containers [35.6 × 27.9 width × 8.3 cm (length × width × height); Sterilite Corp., Townsend, MA, USA, catalogue no. 1963] at a density of 150–200 larvae per liter of water and fed with Tetra pond Koi growth food. Food was renewed every 2–3 days until adult emergence. After emergence, adults were kept in 8 × 8 × 8 in. (20.3 cm) metal cages (Bioquip Products Inc., Compton, CA, USA) under controlled conditions (27 ± 1 °C; 70% relative humidty; 12:12-h light:dark photoperiod) and fed with 10% sucrose solution ad libitum until their use in experiments. The Ae. albopictus colony (Spring Valley, NY, USA; kindly provided by Laura Harrington, Cornell University) was newly established in 2019 from field-collected eggs. Aedes albopictus were hatched in distilled water, reared, and maintained similarly to the Anopheles described above. F4 females were used for the MAYV challenge experiments.

Mosquito vector competence for Mayaro virus

Mayaro virus strain TRVL-4675 (isolated from the serum of an infected human in Trinidad in 1954 and belonging to the D genotype) was freshly propagated in Vero (African Green Monkey kidney) cell cultures maintained at 37 °C, 5% CO2. At 48 h following infection (multiplicity of infection ≈ 1.0), the supernatant was harvested and diluted 1:1 with defibrinated sheep blood plus a final concentration of 2.5% sucrose. For each species, three biological replicates at different times were performed, and for each experiment 90–100 female mosquitoes were allowed to feed. Female An. quadrimaculatus mosquitoes (3–5 days old) deprived of sugar for 1–2 h and female Ae. albopictus (5–7 days old) deprived of sugar for 24 h were allowed to feed on MAYV–blood suspension for 45 min via a Hemotek membrane feeding system (Discovery Workshops, Acrington, UK) with a porcine sausage casing membrane, at 37 °C [15]. Following feeding, females were anesthetized with CO2, and fully engorged mosquitoes were transferred to 0.6-L cardboard containers and maintained with 10% sucrose at 27 °C until harvested for testing. Aliquots (1 mL) of each blood meal pre-feeding were frozen at − 80 °C to determine MAYV titer by plaque assay on Vero cells.

Detection of Mayaro virus

Infection, dissemination, and transmission were determined on days 7 and 14 post-infectious blood meal (dpi: days post-infection), as previously described [15]. Blood meals, mosquito bodies, legs, and salivary secretions were assayed for infection by plaque assay on Vero cells [16]. Briefly, Vero cells were seeded in six-well plates at a density of 6.0 × 105 cells per well and incubated for 3–4 days at 37 °C, 5% CO2, to produce a confluent monolayer. The cell monolayers were inoculated with 0.1 mL of 10-fold serial dilutions of the blood meals (diluted in BA-1) in duplicate or with undiluted mosquito bodies, legs, and salivary secretions from each homogenized mosquito sample. Viral adsorption was allowed to proceed for 1 h at 37 °C with rocking of the plates every 15 min. A 3-mL overlay of MEM, 5% fetal bovine serum, and 0.6% Oxoid agar supplemented with 0.2× penicillin–streptomycin/mL, 0.5 μg of fungizone (amphotericin B)/mL, and 20 μg of gentamicin/mL was added at the conclusion of adsorption. The infected monolayers were incubated at 37 °C, 5% CO2. After 2 days of infection a second overlay, similar to the first but with the addition of 1.5% Neutral Red (Sigma–Aldrich Co., St. Louis, MO), was added to the wells, and the plates were incubated overnight at 37 °C, 5% CO2. For the blood meal, the plaques were counted, and the viral titer was calculated and expressed as plaque-forming units per milliliter. For mosquito samples, presence or absence of plaques was checked.

Dissemination rate was defined the proportion of mosquitoes with infected legs among the mosquitoes with infected bodies and transmission rate as the proportion of mosquitoes with infectious saliva collected by capillary transmission method [15] among mosquitoes with disseminated infection. Dissemination efficiencies and transmission efficiencies refer to the proportion of mosquitoes with infectious virus in the legs or in the saliva, respectively, among all mosquitoes that fed.

Statistical analysis

A Fisher’s exact test was used to compare combined infection rates, dissemination rates, dissemination efficiencies, transmission rates, and transmission efficiencies between or within mosquito species and between time points. All statistical analyses were carried out at a significance level of P < 0.05. OpenEpi, version 3, an open source calculator (TwobyTwo; https://www.openepi.com/TwobyTwo/TwobyTwo.htm), was used for all statistical analysis.

Results

A total of 180 Anquadrimaculatus and 180 Ae. albopictus were analyzed in this study.

Oral challenge with MAYV led to the establishment of high infection rates in both mosquito species. The mean infection rates of Ae. albopictus and An. quadrimaculatus were significantly different at both time points [7 dpi: 100.0 vs. 82.22%, respectively, P < 0.0001, odds ratio (OR) 38.7, 95% confidence interval (CI) 2.281–656.8; 14 dpi: 100.0 vs 74.44%, respectively, P < 0.0001, OR 61.45, 95% CI 3.665–1030; Table 1]; however, no significant difference between time points within mosquito species was observed.

Table 1 Aedes albopictus and Anopheles quadrimaculatus infection rates, dissemination rates, and transmission rates after exposure to Mayaro virus

Within mosquito species similar mean dissemination rates were observed for Aealbopictus and An. quadrimaculatus for both time points (95.56% at 7 dpi vs. 100% at 14 dpi and 61.0% at 7 dpi vs. 59.9% at 14 dpi, respectively; Table 1). Dissemination efficiencies at 7 and 14 dpi were significantly different between mosquito species (P < 0.0001, OR 21.5, 95% CI 7.27–63.58 and P < 0.0001, OR 213.9, 95% CI 12.88–3554, at 7 dpi and 14 dpi, respectively; Table 1). Detection of infectious viral particules in mosquitoes collected at 7 and 14 dpi indicated that Aealbopictus and An. quadrimaculatus are highly susceptible to MAYV through oral challenge and subsequently support viral replication.

Infectious viral particules were detected in saliva of individuals with disseminated infections for 37.16 and 64.44% Ae. albopictus and for 25.15 and 48.44% An. quadrimaculatus, at 7 and 14 dpi, respectively (Table 1). In both mosquito species, the transmission rates increased with time; however, a significant difference was only observed for Ae. albopictus (P < 0.0001, OR 0.3269, 95% CI 0.1769–0.6043; Table 1). Furthermore, transmission efficiencies were significantly different between mosquito species at both time points (P < 0.0017, OR 2.995, 95% CI 1.465–6.122 and P < 0.0001, OR 6.773, 95% CI 3.482–13.17, at 7 dpi and 14 dpi, respectively; Table 1).

Discussion

To our knowledge, this is the first study to examine the vector competence of a temperate population of Aealbopictus from the Northeast USA, and the second study on An. quadrimaculatus, a native and abundant anopheline mosquito in the Northeast USA, including New York, for MAYV. As mosquitoes and their viruses continue to expand their geographic range and emerge in unpredictable ways, the USA could face an increased threat from MAYV in the future. Our data demonstrate that New York Ae. albopictus and An. quadrimaculatus are highly competent vectors of MAYV.

When multiple mosquito species are involved in the transmission of an arbovirus, the effort needed to prevent human exposure increases. Determining the role of each species is important [17]. We found that dissemination and transmission rates were lower for An. quadrimaculatus than for Ae. albopictus. In locations where Ae. albopictus is prevalent, this difference might play a role in the epidemiology of MAYV considering its high vector competence, were it to be introduced.

Aedes albopictus is a highly invasive species that has been introduced into the USA where it has become permanently established in at least 27 states, including New York [18, 19]. It is predicted that this mosquito species will continue to spread globally over the coming decades, increasing the risk to human health [20]. In the USA, Ae. albopictus may be infected with a number of arboviruses, including Eastern Equine Encephalitis virus, Dengue virus, St. Louis encephalitis virus, La Crosse orthobunyavirus, and West Nile virus [19]. In addition, its role as a vector is recognized for Chikungunya virus and Zika virus, both introduced recently into the USA [19, 20]. Using a temperate population of Ae. albopictus from New York, we confirmed earlier studies that demonstrated the potential of Ae. albopictus to transmit MAYV [13, 14, 21].

The high infection rates (85–100%) obtained in our results are similar to the reports of others [13, 14]. Moreover, the high dissemination and transmission rates observed in our study corroborate the findings of Diop et al [13]. However, Wiggins et al [14], using the same MAYV strain that we used, found lower transmission rates compared to our study and Pereira et al. [21]. These differences could be due to the genetic background (geographical origin) of the vector and/or the difference in mosquito incubation temperature, as has been shown for Chikungunya virus [22, 23].

Anopheles mosquitoes are persistently exposed in nature to diverse arboviruses, but in general an assessment of their potential to transmit arboviral pathogens has been neglected. In addition to MAYV, vector competence of Anopheles mosquitoes for O’nyong nyong (ONNV) virus, Rift Valley fever phlebovirus, Eastern equine encephalitis virus, and Cache Valley orthobunyavirus has been reported [12, 24,25,26]. However, only ONNV is known to rely on Anopheles spp. as primary vectors [27, 28]. Anopheles quadrimaculatus are primarily mammalophagic mosquitoes. In the Northeast USA, white-tailed deer are the predominately identified vertebrate host [29]. However, this may be an artefact of human accessibility rather than an indication of preference. Anopheles quadrimaculatus mosquitoes are historically important vectors of human malaria parasites (Plasmodium vivax) [30], suggesting that they have a high level of anthropophily. Furthermore, white-tailed deer overabundance and availability throughout the region may explain mosquitoes feeding behavior [17, 31]. It is suggested that An. quadrimaculatus and An. punctipennis may contribute to the transmission of Eastern equine encephalitis, Jamestown Canyon, and Cache Valley viruses in the Northeast USA [29]. Recently, the capacity of Anquadrimaculatus to transmit MAYV at 7 dpi but not at 14 dpi was demonstrated [12]. In our study, Anquadrimaculatus mosquitoes were able to transmit the virus at both time points, suggesting this species may be an overlooked vector for MAYV emergence and invasion in the USA.

Conclusion

Information on the competence of mosquito vectors is essential for controlling and preventing viruses transmitted by arthropods. While it is not possible to accurately predict the emergence of a disease, in light of our results, MAYV presents a health threat to the USA, and local authorities should reinforce epidemiological and entomological surveillance to detect the introduction of this viral pathogen.

Availability of data and materials

Data generated in this study are available from the corresponding authors upon reasonable request.

Abbreviations

dpi:

Days post-infection

MAYV:

Mayaro virus

ONNV:

O’nyong nyong virus

References

  1. Auguste AJ, Liria J, Forrester NL, Giambalvo D, Moncada M, Long KC, et al. Evolutionary and ecological characterization of Mayaro virus strains isolated during an outbreak, Venezuela, 2010. Emerg Infect Dis. 2015;21:1742–50.

    Article  Google Scholar 

  2. Kantor AM, Lin J, Wang A, Thompson DC, Franz AWE. Infection pattern of Mayaro virus in Aedes aegypti (Diptera : Culicidae ) and Transmission potential of the virus in mixed infections with Chikungunya virus. J Med Entomol. 2019;56:832–43.

    Article  CAS  Google Scholar 

  3. Mackay IM, Arden KE. Mayaro virus : a forest virus primed for a trip to the city ? Microbes Infect. 2016;18:724–34.

    Article  Google Scholar 

  4. Powers AM, Aguilar PV, Chandler LJ, Brault AC, Meakins TA, Watts D, et al. Genetic relationships among Mayaro and Una viruses suggest distinct patterns of transmission. Am J Trop Med Hyg. 2006;75:461–9.

    Article  CAS  Google Scholar 

  5. Figueiredo M, Figueiredo L. Emerging alphaviruses in the Americas : Chikungunya and Mayaro. Rev Soc Bras Med Trop. 2014;47:677–83.

    Article  Google Scholar 

  6. Hoch A, Peterson N, LeDuc J, Pinheiro F. An outbreak of Mayaro virus disease in Belterra, Brazil. III. Entomological and ecological studies. Am J Trop Med Hyg. 1981;30:689–98.

    Article  CAS  Google Scholar 

  7. Izurieta RO, Macaluso M, Watts DM, Tesh RB, Guerra B, Cruz LM, et al. Hunting in the Rainforest and Mayaro virus infection: an emerging Alphavirus in Ecuador. J Glob Infect Dis. 2011;3:317–23.

    Article  Google Scholar 

  8. Pauvolid-Corrêa A, Soares Juliano R, Campos Z, Velez J, Nogueira RMR, Komar N. Neutralising antibodies for Mayaro virus in Pantanal Brazil. Mem Inst Oswaldo Cruz. 2015;110:125–33.

    Article  Google Scholar 

  9. De Thoisy B, Gardon J, Alba Salas R, Morvan J, Kazanji M. Mayaro virus in wild mammals, French Guiana. Emerg Infect Dis. 2003;9:1326–9.

    Article  Google Scholar 

  10. De O’Mota MT, Avilla CMS, Nogueira ML. Mayaro virus: a neglected threat could cause the next worldwide viral epidemic. Future Virol. 2019;14:375–7.

    Article  Google Scholar 

  11. Alonso-Palomares LA, Moreno-García M, Lanz-Mendoza H, Salazar MI. Molecular basis for arbovirus transmission by Aedes aegypti mosquitoes. Intervirology. 2019;61:255–64.

    Article  Google Scholar 

  12. Brustolin M, Pujhari S, Henderson CA, Rasgon JL. Anophelesmosquitoes may drive invasion and transmission of Mayaro virus across geographically diverse regions. PLoS Negl Trop Dis. 2018;12:e0006895.

    Article  CAS  Google Scholar 

  13. Diop F, Alout H, Diagne CT, Bengue M, Baronti C, Hamel R, et al. Differential susceptibility and innate immune response of Aedes aegypti and Aedes albopictus to the haitian strain of the Mayaro virus. Viruses. 2019;11:1–11.

    Article  Google Scholar 

  14. Wiggins K, Eastmond B, Alto BW. Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes. Med Vet Entomol. 2018;32:436–42.

    Article  CAS  Google Scholar 

  15. Ciota AT, Bialosuknia SM, Zink SD, Brecher M, Ehrbar DJ, Morrissette MN, et al. Effects of Zika virus Strain and Aedes mosquito species on vector competence. Emerg Infect Dis. 2017;23:1110–7.

    Article  CAS  Google Scholar 

  16. Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD. Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg. 2004;71:493–500.

    Article  CAS  Google Scholar 

  17. McMillan JR, Armstrong PM, Andreadis TG. Patterns of mosquito and arbovirus community composition and ecological indexes of arboviral risk in the Northeast United States. PLoS Negl Trop Dis. 2020;14:1–21.

    Article  Google Scholar 

  18. Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT. Climate change influences on global distributions of Dengue and Chikungunya virus vectors. Philos Trans R Soc B Biol Sci. 2015;370:1–9.

    Article  Google Scholar 

  19. Vanlandingham DL, Higgs S, Huang YJS. Aedes albopictus (Diptera: Culicidae) and mosquito-borne viruses in the United States. J Med Entomol. 2016;53:1024–8.

    Article  Google Scholar 

  20. Kraemer MUG, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4:854–63.

    Article  CAS  Google Scholar 

  21. Pereira TN, Carvalho FD, De Mendonça SF, Rocha MN, Moreira LA. Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLoS Negl Trop Dis. 2020;14:e0007518.

    Article  Google Scholar 

  22. Zouache K, Fontaine A, Vega-Rua A, Mousson L, Thiberge JM, Lourenco-De-Oliveira R, et al. Three-way interactions between mosquito population, viral strain and temperature underlying Chikungunya virus transmission potential. Proc Biol Sci. 2014;281:20141078.

    PubMed  PubMed Central  Google Scholar 

  23. Vega-Rua A, Zouache K, Girod R, Failloux A-B, Lourenco-de-Oliveira R. High Level of Vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol. 2014;88:6294–306.

    Article  CAS  Google Scholar 

  24. Moncayo AC, Edman JD, Turell MJ. Effect of Eastern equine encephalomyelitis virus on the survival of Aedes albopictus, Anopheles quadrimaculatus, and Coquillettidia perturbans (Diptera: Culicidae). J Med Entomol. 2000;37:701–6.

    Article  CAS  Google Scholar 

  25. Nepomichene TNJJ, Raharimalala FN, Andriamandimby SF, Ravalohery J-P, Failloux A-B, Heraud J-M, et al. Vector competence of Culex antennatus and Anopheles coustani mosquitoes for Rift Valley fever virus in Madagascar. Med Vet Entomol. 2018;32:259–62.

    Article  CAS  Google Scholar 

  26. Blackmore CGM, Blackmore MS, Grimstad PR. Role of Anopheles quadrimaculatus and Coquillettidia perturbans (Diptera: Culicidae) in the transmission cycle of Cache Valley virus (Bunyaviridae: Bunyavirus) in the Midwest, USA. J Med Entomol. 1998;35:660–4.

    Article  CAS  Google Scholar 

  27. Carissimo G, Pondeville E, Mcfarlane M, Dietrich I, Mitri C, Bischoff E, et al. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota. Proc Natl Acad Sci USA. 2015;112:E176–85.

    Article  CAS  Google Scholar 

  28. Carissimo G, Pain A, Belda E, Vernick KD. Highly focused transcriptional response of Anopheles coluzziitoO ’ nyong nyong arbovirus during the primary midgut infection. BMC Genomics. 2018;19:526.

    Article  Google Scholar 

  29. Molaei G, Farajollah A, Armstrong PM, Oliver J, Howard JJ, Andreadis TG. Identification of bloodmeals in Anopheles quadrimaculatus and Anopheles punctipennis from Eastern equine encephalitis virus foci in Northeastern USA. Med Vet Entomol. 2009;23:350–6.

    Article  CAS  Google Scholar 

  30. Robert LL, Santos-Ciminera PD, Andre RG, Schultz GW, Lawyer PG, Nigro J, et al. Plasmodium-infected Anopheles mosquitoes collected in Virginia and Maryland following local transmission of Plasmodium vivax malaria in Loudoun County Virginia. J Am Mosq Control Assoc. 2005;21:187–93.

    Article  Google Scholar 

  31. Molaei G, Andreadis TG, Armstrong PM, Diuk-Wasser M. Host-feeding patterns of potential mosquito vectors in Connecticut, USA: molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia. J Med Entomol. 2008;45:1143–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the New York State Department of Health, Wadsworth Center Media and Tissue Core Facility for providing cells and media for these studies. We additionally thank the NYS Arbovirus Laboratory insectary staff for assistance with rearing and experimentation. Technical assistance was also provided by Maya Andonova and Kimberly Holloway.

Funding

This publication was supported by Cooperative Agreement number NU50CK000516, funded by the Centers for Disease Control and Prevention. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the Centers for Disease Control and Prevention or the Department of Health

Author information

Authors and Affiliations

Authors

Contributions

CD, ATC, and LDK designed the research. CD performed the research. CD, ATC, and LDK analyzed the data and wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Constentin Dieme.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieme, C., Ciota, A.T. & Kramer, L.D. Transmission potential of Mayaro virus by Aedes albopictus, and Anopheles quadrimaculatus from the USA. Parasites Vectors 13, 613 (2020). https://doi.org/10.1186/s13071-020-04478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13071-020-04478-4

Keywords