Rizzoli A, Hauffe H, Carpi G, Vourc HG, Neteler M, Rosa R. Lyme borreliosis in Europe. Euro Surveill. 2011;16:19906.
PubMed
Google Scholar
Schwartz AM, Hinckley AF, Mead PS, Hook SA, Kugeler KJ. Surveillance for Lyme Disease—United States, 2008–2015. MMWR Surveill Summ. 2017;66:1–12.
Article
PubMed
PubMed Central
Google Scholar
Glass GE, Amerasinghe FP, Morgan JM III, Scott TW. Predicting Ixodes scapularis abundance on white-tailed deer using geographic information systems. Am J Trop Med Hyg. 1994;51:538–44.
Article
CAS
PubMed
Google Scholar
Glass GE, Schwartz BS, Morgan JM III, Johnson DT, Noy PM, Israel E. Environmental risk factors for Lyme disease identified with geographic information systems. Am J Public Health. 1995;85:944–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robertson JN, Gray JS, Stewart P. Tick bite and Lyme borreliosis risk at a recreational site in England. Eur J Epidemiol. 2000;16:647–52.
Article
CAS
PubMed
Google Scholar
Coipan EC, Jahfari S, Fonville M, Maassen CB, van der Giessen J, Takken W, et al. Spatiotemporal dynamics of emerging pathogens in questing Ixodes ricinus. Front Cell Infect Microbiol. 2013;3:36.
Article
PubMed
PubMed Central
Google Scholar
Mannelli A, Bertolotti L, Gern L, Gray J. Ecology of Borrelia burgdorferi sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiol Rev. 2012;36:837–61.
Article
CAS
PubMed
Google Scholar
Takken W, van Vliet AJ, Verhulst NO, Jacobs FH, Gassner F, Hartemink N, et al. Acarological risk of Borrelia burgdorferi sensu lato infections across space and time in The Netherlands. Vector Borne Zoonotic Dis. 2017;17:99–107.
Article
PubMed
Google Scholar
Jones CG, Ostfeld RS, Richard MP, Schauber EM, Wolff JO. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science. 1998;279:1023–6.
Article
CAS
PubMed
Google Scholar
Hofmeester TR, Jansen PA, Wijnen HJ, Coipan EC, Fonville M, Prins HHT, et al. Cascading effects of predator activity on tick-borne disease risk. Proc Biol Sci. 2017;284:20170453.
Article
PubMed
PubMed Central
Google Scholar
Takumi K, Sprong H, Hofmeester TR. Impact of vertebrate communities on Ixodes ricinus-borne disease risk in forest areas. Parasit Vectors. 2019;12:434.
Article
PubMed
PubMed Central
Google Scholar
Hofmeester TR, Sprong H, Jansen PA, Prins HHT, van Wieren SE. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasit Vectors. 2017;10:433.
Article
PubMed
PubMed Central
Google Scholar
Ostfeld RS, Schauber EM, Canham CD, Keesing F, Jones CG, Wolff JO. Effects of acorn production and mouse abundance on abundance and Borrelia burgdorferi infection prevalence of nymphal Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 2001;1:55–63.
Article
CAS
PubMed
Google Scholar
Bogdziewicz M, Zwolak R, Crone EE. How do vertebrates respond to mast seeding? Oikos. 2016;125:300–7.
Article
Google Scholar
Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 2006;4:e145.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ostfeld RS, Jones CG, Wolff JO. Of mice and mast. BioScience. 1996;46:323–30.
Article
Google Scholar
Ostfeld RS, Keesing F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol Evol. 2000;15:232–7.
Article
CAS
PubMed
Google Scholar
Wolff JO. Coexistence of white-footed mice and deer mice may be mediated by fluctuating environmental conditions. Oecologia. 1996;108:529–33.
Article
PubMed
Google Scholar
Clotfelter ED, Pedersen AB, Cranford JA, Ram N, Snajdr EA, Nolan V Jr, et al. Acorn mast drives long-term dynamics of rodent and songbird populations. Oecologia. 2007;154:493–503.
Article
PubMed
Google Scholar
Jensen TS. Seed production and outbreaks of non-cyclic rodent populations in deciduous forests. Oecologia. 1982;54:184–92.
Article
PubMed
Google Scholar
McShea WJ. The influence of acorn crops on annual variation in rodent and bird populations. Ecology. 2000;81:228–38.
Article
Google Scholar
Pucek Z, Jędrzejewski W, Jędrzejewska B, Pucek M. Rodent population dynamics in a primeval deciduous forest (Białowieża National Park) in relation to weather, seed crop, and predation. Acta Theriol. 1993;38:199–232.
Article
Google Scholar
Swart A, Bekker DL, Maas M, de Vries A, Pijnacker R, Reusken CB, et al. Modelling human Puumala hantavirus infection in relation to bank vole abundance and masting intensity in the Netherlands. Infect Ecol Epidemiol. 2017;7:1287986.
PubMed
PubMed Central
Google Scholar
Tersago K, Verhagen R, Servais A, Heyman P, Ducoffre G, Leirs H, et al. Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate. Epidemiol Infect. 2009;137:250–6.
Article
CAS
PubMed
Google Scholar
Schauber EM, Ostfeld RS, Evans AS Jr. What is the best predictor of annual Lyme disease incidence: weather, mice, or acorns? Ecol Appl. 2005;15:575–86.
Article
Google Scholar
Burri C, Schumann O, Schumann C, Gern L. Are Apodemus spp. mice and Myodes glareolus reservoirs for Borrelia miyamotoi, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, R. monacensis and Anaplasma phagocytophilum? Ticks Tick Borne Dis. 2014;5:245–51.
Article
CAS
PubMed
Google Scholar
Hu CM, Humair PF, Wallich R, Gern L. Apodemus sp. rodents, reservoir hosts for Borrelia afzelii in an endemic area in Switzerland. Zentralbl Bakteriol. 1997;285:558–64.
Article
CAS
PubMed
Google Scholar
Gassner F, Takken W, van der Plas C, Kastelein P, Hoetmer AJ, Holdinga M, et al. Rodent species as natural reservoirs of Borrelia burgdorferi sensu lato in different habitats of Ixodes ricinus in The Netherlands. Ticks Tick Borne Dis. 2013;4:452–8.
Article
PubMed
Google Scholar
Karbowiak G. Zoonotic reservoir of Babesia microti in Poland. Pol J Microbiol. 2004;53(Suppl.):61–5.
PubMed
Google Scholar
Silaghi C, Beck R, Oteo JA, Pfeffer M, Sprong H. Neoehrlichiosis: an emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Exp Appl Acarol. 2016;68:279–97.
Article
PubMed
Google Scholar
Hofmeester T, Coipan E, Van Wieren S, Prins H, Takken W, Sprong H. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle. Environ Res Lett. 2016;11:043001.
Article
Google Scholar
Stanek G. Pandoraʼs Box: pathogens in Ixodes ricinus ticks in Central Europe. Wien Klin Wochenschr. 2009;121:673–83.
Article
PubMed
Google Scholar
Gern L, Rais O. Efficient transmission of Borrelia burgdorferi between cofeeding Ixodes ricinus ticks (Acari: Ixodidae). J Med Entomol. 1996;33:189–92.
Article
CAS
PubMed
Google Scholar
Voordouw MJ. Co-feeding transmission in Lyme disease pathogens. Parasitology. 2015;142:290–302.
Article
PubMed
Google Scholar
Heylen D, Fonville M, van Leeuwen AD, Sprong H. Co-infections and transmission dynamics in a tick-borne bacterium community exposed to songbirds. Environ Microbiol. 2016;18:988–96.
Article
PubMed
Google Scholar
Hornok S, Kovats D, Csorgo T, Meli ML, Gonczi E, Hadnagy Z, et al. Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasit Vectors. 2014;7:128.
Article
PubMed
PubMed Central
Google Scholar
Kurtenbach K, Carey D, Hoodless AN, Nuttall PA, Randolph SE. Competence of pheasants as reservoirs for Lyme disease spirochetes. J Med Entomol. 1998;35:77–81.
Article
CAS
PubMed
Google Scholar
Taragelʼova V, Koci J, Hanincova K, Kurtenbach K, Derdakova M, Ogden NH, et al. Blackbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of borreliosis in central Europe. Appl Environ Microbiol. 2008;74:1289–93.
Article
PubMed
CAS
Google Scholar
Sunyer P, Muñoz A, Mazerolle MJ, Bonal R, Espelta JM. Wood mouse population dynamics: interplay among seed abundance seasonality, shrub cover and wild boar interference. Mamm Bio. 2016;81:372–9.
Article
Google Scholar
Perret JL, Guigoz E, Rais O, Gern L. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res. 2000;86:554–7.
Article
CAS
PubMed
Google Scholar
Randolph SE. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology. 2004;129(Suppl.):S37–65.
Article
PubMed
Google Scholar
Sprong H, Hofhuis A, Gassner F, Takken W, Jacobs F, van Vliet AJ, et al. Circumstantial evidence for an increase in the total number and activity of Borrelia-infected Ixodes ricinus in the Netherlands. Parasit Vectors. 2012;5:294.
Article
PubMed
PubMed Central
Google Scholar
Panzacchi M, Linnell JD, Melis C, Odden M, Odden J, Gorini L, et al. Effect of land-use on small mammal abundance and diversity in a forest-farmland mosaic landscape in south-eastern Norway. Forest Ecol Manag. 2010;259:1536–45.
Article
Google Scholar
Leirs H, Stenseth NC, Nichols JD, Hines JE, Verhagen R, Verheyen W. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent. Nature. 1997;389:176.
Article
CAS
PubMed
Google Scholar
Schnabel ZE. The estimation of the total fish population of a lake. Am Math Mon. 1938;45:348–52.
Google Scholar
Wielinga PR, Gaasenbeek C, Fonville M, de Boer A, de Vries A, Dimmers W, et al. Longitudinal analysis of tick densities and Borrelia, Anaplasma, and Ehrlichia infections of Ixodes ricinus ticks in different habitat areas in The Netherlands. Appl Environ Microbiol. 2006;72:7594–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heylen D, Tijsse E, Fonville M, Matthysen E, Sprong H. Transmission dynamics of Borrelia burgdorferi sl in a bird tick community. Environ Microbiol. 2013;15:663–73.
Article
PubMed
Google Scholar
Hovius JW, de Wever B, Sohne M, Brouwer MC, Coumou J, Wagemakers A, et al. A case of meningoencephalitis by the relapsing fever spirochaete Borrelia miyamotoi in Europe. Lancet. 2013;382:658.
Article
PubMed
PubMed Central
Google Scholar
Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, et al. Prevalence of Neoehrlichia mikurensis in ticks and rodents from North-west Europe. Parasit Vectors. 2012;5:74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stenos J, Graves SR, Unsworth NB. A highly sensitive and specific real-time PCR assay for the detection of spotted fever and typhus group Rickettsiae. Am J Trop Med. 2005;73:1083–5.
Article
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing. In: R version 3.5.1 (2018-07-02) “Feather Spray” edn. Vienna: R Foundation for Statistical Computing; 2018. https://www.R-project.org/
Team R. RStudio: integrated development for R. In: 0.99.903 edn. Boston: RStudio, Inc.; 2015.
Coipan CE, van Duijvendijk GLA, Hofmeester TR, Takumi K, Sprong H. The genetic diversity of Borrelia afzelii is not maintained by the diversity of the rodent hosts. Parasit Vectors. 2018;11:454.
Article
PubMed
PubMed Central
Google Scholar
Mysterud A, Stigum VM, Jaarsma RI, Sprong H. Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Sci Rep. 2019;9:5088.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hanincova K, Schafer SM, Etti S, Sewell HS, Taragelova V, Ziak D, et al. Association of Borrelia afzelii with rodents in Europe. Parasitology. 2003;126:11–20.
Article
CAS
PubMed
Google Scholar
Humair PF, Turrian N, Aeschilimann A, Gern L. Borrelia burgdorferi in a focus of Lyme borreliosis: epizootiologic contribution of small mammals. Folia Parasitol (Praha). 1993;40:65–70.
CAS
PubMed
Google Scholar
Kurtenbach K, Kampen H, Dizij A, Arndt S, Seitz HM, Schaible UE, et al. Infestation of rodents with larval Ixodes ricinus (Acari: Ixodidae) is an important factor in the transmission cycle of Borrelia burgdorferi s.l. in German woodlands. J Med Entomol. 1995;32:807–17.
Article
CAS
PubMed
Google Scholar
Nilsson A, Lundqvist L. Host selection and movements of Ixodes ricinus (Acari) larvae on small mammals. Oikos. 1978;31:313–22.
Article
Google Scholar
Dizij A, Kurtenbach K. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to Ixodes ricinus L., the main European vector of Borrelia burgdorferi. Parasite Immunol. 1995;17:177–83.
Article
CAS
PubMed
Google Scholar
Humair P, Rais O, Gern L. Transmission of Borrelia afzelii from Apodemus mice and Clethrionomys voles to Ixodes ricinus ticks: differential transmission pattern and overwintering maintenance. Parasitology. 1999;118:33–42.
Article
PubMed
Google Scholar
Kybicova K, Kurzova Z, Hulinska D. Molecular and serological evidence of Borrelia burgdorferi sensu lato in wild rodents in the Czech Republic. Vector Borne Zoonotic Dis. 2008;8:645–52.
Article
CAS
PubMed
Google Scholar
Talleklint L, Jaenson TG. Transmission of Borrelia burgdorferi s.l. from mammal reservoirs to the primary vector of Lyme borreliosis, Ixodes ricinus (Acari: Ixodidae), in Sweden. J Med Entomol. 1994;31:880–6.
Article
CAS
PubMed
Google Scholar
Bown KJ, Lambin X, Telford GR, Ogden NH, Telfer S, Woldehiwet Z, et al. Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl Environ Microbiol. 2008;74:7118–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Randolph SE. Quantifying parameters in the transmission of Babesia microti by the tick Ixodes trianguliceps amongst voles (Clethrionomys glareolus). Parasitology. 1995;110:287–95.
Article
PubMed
Google Scholar
Cayol C, Jaaskelainen A, Koskela E, Kyrolainen S, Mappes T, Siukkola A, et al. Sympatric Ixodes-tick species: pattern of distribution and pathogen transmission within wild rodent populations. Sci Rep. 2018;8:16660.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kurtenbach K, Peacey M, Rijpkema SG, Hoodless AN, Nuttall PA, Randolph SE. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl Environ Microbiol. 1998;64:1169–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Humair PF, Postic D, Wallich R, Gern L. An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes. Zentralbl Bakteriol. 1998;287:521–38.
Article
CAS
PubMed
Google Scholar
Burri C, Dupasquier C, Bastic V, Gern L. Pathogens of emerging tick-borne diseases, Anaplasma phagocytophilum, Rickettsia spp., and Babesia spp., in ixodes ticks collected from rodents at four sites in Switzerland (Canton of Bern). Vector Borne Zoonotic Dis. 2011;11:939–44.
Article
PubMed
Google Scholar
Miťková K, Berthová L, Kalúz S, Kazimírová M, Burdová L, Kocianová E. First detections of Rickettsia helvetica and R. monacensis in ectoparasitic mites (Laelapidae and Trombiculidae) infesting rodents in south-western Slovakia. Parasitol Res. 2015;114:2465–72.
Article
PubMed
Google Scholar
Obiegala A, Oltersdorf C, Silaghi C, Kiefer D, Kiefer M, Woll D, et al. Rickettsia spp. in small mammals and their parasitizing ectoparasites from Saxony, Germany. Vet Parasitol. 2016;5:19–24.
Google Scholar
Burgdorfer W, Aeschlimann A, Peter O, Hayes SF, Philip RN. Ixodes ricinus: vector of a hitherto undescribed spotted fever group agent in Switzerland. Acta Trop. 1979;36:357–67.
CAS
PubMed
Google Scholar
Zemtsova G, Killmaster L, Mumcuoglu K, Levin MLA. Co-feeding as a route for transmission of Rickettsia conorii israelensis between Rhipicephalus sanguineus ticks. Exp Appl Acarol. 2010;52:383–92.
Article
CAS
PubMed
Google Scholar
Scoles GA, Papero M, Beati L, Fish D. A relapsing fever group spirochete transmitted by Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 2001;1:21–34.
Article
CAS
PubMed
Google Scholar
van Duijvendijk G, Coipan C, Wagemakers A, Fonville M, Ersoz J, Oei A, et al. Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasit Vectors. 2016;9:97.
Article
PubMed
PubMed Central
CAS
Google Scholar
Taylor KR, Takano A, Konnai S, Shimozuru M, Kawabata H, Tsubota T. Borrelia miyamotoi infections among wild rodents show age and month independence and correlation with Ixodes persulcatus larval attachment in Hokkaido, Japan. Vector Borne Zoonotic Dis. 2013;13:92–7.
Article
PubMed
Google Scholar
Wagemakers A, Koetsveld J, Narasimhan S, Wickel M, Deponte K, Bleijlevens B, et al. Variable major proteins as targets for specific antibodies against Borrelia miyamotoi. J Immunol. 2016;196:4185–95.
Article
CAS
PubMed
Google Scholar
Tully JG, Rose DL, Yunker CE, Carle P, Bov JM, Williamson DL, et al. Spiroplasma ixodetis sp. nov., a new species from Ixodes pacificus ticks collected in Oregon. Int J Syst Evol Micr. 1995;45:23–8.
CAS
Google Scholar
Aquilino A, Masiá M, López P, Galiana AJ, Tovar J, Andrés M, et al. First human systemic infection caused by Spiroplasma. 2015;53:719–21.
Google Scholar
Lorenz B, Schroeder J, Reischl U. First evidence of an endogenous Spiroplasma sp. infection in humans manifesting as unilateral cataract associated with anterior uveitis in a premature baby. Graefes Arch Clin Exp Ophthalmol. 2002;240:348–53.
Article
CAS
PubMed
Google Scholar
Binetruy F, Bailly X, Chevillon C, Martin OY, Bernasconi MV, Duron O. Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between ticks and other arthropods. Ticks Tick Borne Dis. 2019;10:575–84.
Article
PubMed
Google Scholar
Fukatsu T, Tsuchida T, Nikoh N, Koga R. Spiroplasma symbiont of the pea aphid, Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microb. 2001;67:1284–91.
Article
CAS
Google Scholar
Hurst GD, Anbutsu H, Kutsukake M, Fukatsu T. Hidden from the host: Spiroplasma bacteria infecting Drosophila do not cause an immune response, but are suppressed by ectopic immune activation. Insect Mol Biol. 2003;12:93–7.
Article
CAS
PubMed
Google Scholar
Montgomery WI. Population regulation in the wood mouse, Apodemus sylvaticus. II. Density dependence in spatial distribution and reproduction. J Anim Ecol. 1989;58:477–94.
Article
Google Scholar
Hartemink N, van Vliet A, Sprong H, Jacobs F, Garcia-Martí I, Zurita-Milla R, et al. Temporal-spatial variation in questing tick activity in the Netherlands: the effect of climatic and habitat factors. Vector Borne Zoonotic Dis. 2019;19:494–505.
Article
PubMed
Google Scholar
Randolph S. Quantitative ecology of ticks as a basis for transmission models of tick-borne pathogens. Vector Borne Zoonotic Dis. 2002;2:209–15.
Article
PubMed
Google Scholar
Kallio ER, Voutilainen L, Vapalahti O, Vaheri A, Henttonen H, Koskela E, et al. Endemic hantavirus infection impairs the winter survival of its rodent host. Ecology. 2007;88:1911–6.
Article
PubMed
Google Scholar
Nemirov K, Vaheri A, Pljusnin A. Hantaviruses: co-evolution with natural hosts. Rec Res Dev Virol. 2004;6:201–28.
CAS
Google Scholar
De Boer R, Hovius K, Nohlmans M, Gray JS. The woodmouse (Apodemus sylvaticus) as a reservoir of tick-transmitted spirochetes (Borrelia burgdorferi) in The Netherlands. Zentralbl Bakteriol. 1993;279:404–16.
Article
PubMed
Google Scholar
Talleklint L, Jaenson TG. Is the small mammal (Clethrionomys glareolus) or the tick vector (Ixodes ricinus) the primary overwintering reservoir for the Lyme borreliosis spirochete in Sweden? J Wildl Dis. 1995;31:537–40.
Article
CAS
PubMed
Google Scholar
Korn H. Changes in home range size during growth and maturation of the wood mouse (Apodemus sylvaticus) and the bank vole (Clethrionomys glareolus). Oecologia. 1986;68:623–8.
Article
PubMed
Google Scholar
Rudzinska MA, Spielman A, Riek RF, Lewengrub SJ, Plesman J. Intraerythrocytic ‛gametocytesʼ of Babesia microti and their maturation in ticks. Can J Zool. 1979;57:424–34.
Article
CAS
PubMed
Google Scholar
Bell-Sakyi L, Palomar AM, Kazimirova M. Isolation and propagation of a Spiroplasma sp. from Slovakian Ixodes ricinus ticks in Ixodes spp. cell lines. Ticks Tick Borne Dis. 2015;6:601–6.
Article
PubMed
PubMed Central
Google Scholar
Hersh MH, Tibbetts M, Strauss M, Ostfeld RS, Keesing F. Reservoir competence of wildlife host species for Babesia microti. Emerg Infect Dis. 2012;18:1951.
Article
PubMed
PubMed Central
Google Scholar
Hanincová K, Taragelová V, Koci J, Schäfer SM, Hails R, Ullmann AJ, et al. Association of Borrelia garinii and B valaisiana with songbirds in Slovakia. Appl Environ Microbiol. 2003;69:2825–30.
Article
PubMed
PubMed Central
CAS
Google Scholar