Platts PJ, Mason SC, Palmer G, Hill JK, Oliver TH, Powney GD, et al. Habitat availability explains variation in climate-driven range shifts across multiple taxonomic groups. Sci Rep. 2019;9(1):1–10.
Article
CAS
Google Scholar
Garcia-Vozmediano A, Krawczyk AI, Sprong H, Rossi L, Ramassa E, Tomassone L. Ticks climb the mountains: ixodid tick infestation and infection by tick-borne pathogens in the Western Alps. Ticks Tick-borne Dis. 2020;1:101489.
Article
Google Scholar
Tombre IM, Oudman T, Shimmings P, Griffin L, Prop J. Northward range expansion in spring-staging barnacle geese is a response to climate change and population growth, mediated by individual experience. Glob Change Biol. 2019;25(11):3680–93.
Article
Google Scholar
Osland MJ, Feher LC. Winter climate change and the poleward range expansion of a tropical invasive tree (Brazilian pepper—Schinus terebinthifolius). Glob Change Biol. 2020;26(2):607–15.
Article
Google Scholar
Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C. Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Change. 2012;2(4):285–8.
Article
Google Scholar
Smale DA, Wernberg T. Extreme climatic event drives range contraction of a habitat-forming species. Proc R Soc B. 2013;280(1754):20122829.
Article
PubMed
PubMed Central
Google Scholar
Berriozabal-Islas C, Rodrigues JFM, Ramírez-Bautista A, Becerra-López JL, de Oca A. Effect of climate change in lizards of the genus Xenosaurus (Xenosauridae) based on projected changes in climatic suitability and climatic niche conservatism. Ecol Evol. 2018;8(14):6860–71.
Article
PubMed
PubMed Central
Google Scholar
Magalhaes I, Neves D, Santos F, Vidigal T, Brescovit AD, Santos A. Phylogeny of Neotropical Sicarius sand spiders suggests frequent transitions from deserts to dry forests despite antique, broad-scale niche conservatism. Mol Phyl Evol. 2019;140:106569.
Article
CAS
Google Scholar
Thompson CW, Finck EJ. A northward range extension of the hispid cotton rat (Sigmodon hispidus) in Missouri. The Prairie Naturalist. 2013;50:1.
Google Scholar
Dawe KL, Boutin S. Climate change is the primary driver of white-tailed deer (Odocoileus virginianus) range expansion at the northern extent of its range; land use is secondary. Ecol Evol. 2016;6(18):6435–51.
Article
PubMed
PubMed Central
Google Scholar
Dobbertin M, Hilker N, Rebetez M, Zimmermann NE, Wohlgemuth T, Rigling A. The upward shift in altitude of pine mistletoe (Viscum album ssp austriacum) in Switzerland—the result of climate warming? Int J Biometeorol. 2005;50(1):40–7.
Article
PubMed
Google Scholar
Lenoir J, Gégout J-C, Marquet P, De Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century. Science. 2008;320(5884):1768–71.
Article
CAS
PubMed
Google Scholar
Rumpf SB, Hülber K, Klonner G, Moser D, Schütz M, Wessely J, et al. Range dynamics of mountain plants decrease with elevation. Proc Natl Acad Sci USA. 2018;115(8):1848–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniel M, Materna J, Hőnig V, Metelka L, Danielová V, Harčarik J, et al. Vertical distribution of the tick Ixodes ricinus and tick-borne pathogens in the northern Moravian mountains correlated with climate warming (Jeseníky Mts., Czech Republic). Cent Eur J Pub Health. 2009;17:3.
Google Scholar
Jore S, Viljugrein H, Hofshagen M, Brun-Hansen H, Kristoffersen AB, Nygard K, et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasites Vectors. 2011;4:84.
Article
PubMed
PubMed Central
Google Scholar
Martello E, Mannelli A, Ragagli C, Ambrogi C, Selmi M, Ceballos LA, et al. Range expansion of Ixodes ricinus to higher altitude, and co-infestation of small rodents with Dermacentor marginatus in the Northern Apennines Italy. Ticks Tick-borne Dis. 2014;5(6):970–4.
Article
PubMed
Google Scholar
Daniel M. Influence of the microclimate on the vertical distribution of the tick Ixodes ricinus (L) in Central Europe. Acarology. 1993;34(2):105–13.
Google Scholar
Estrada-Peña A, Mihalca AD, Petney TN. Ticks of Europe and North Africa: a guide to species identification. New York: Springer; 2018.
Google Scholar
Sonenshine DE, Roe RM. Biology of ticks. Oxford: Oxford University Press; 2013.
Lindgren E, Talleklint L, Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect. 2000;108(2):119–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leighton PA, Koffi JK, Pelcat Y, Lindsay LR, Ogden NH. Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. J App Ecol. 2012;49(2):457–64.
Article
Google Scholar
Sormunen J, Kulha N, Klemola T (editors). Reducing tick bite risk in Finland—combining citizen science and GIS for predictive modelling of tick occurrence. EGU Gen Assembly Conf Abstr. 2017:7778.
Jouda F, Perret JL, Gern L. Ixodes ricinus density, and distribution and prevalence of Borrelia burgdorferi sensu lato infection along an altitudinal gradient. J Med Entomol. 2004;41(2):162–9.
Article
PubMed
Google Scholar
Danielová V, Kliegrová S, Daniel M, Benes C. Influence of climate warming on tick-borne encephalitis expansion to higher altitudes over the last decade (1997–2006) in the Highland Region (Czech Republic). Cent Eur J Pub Health. 2008;16(1):4.
Article
Google Scholar
Cadenas FM, Rais O, Jouda F, Douet V, Humair P-F, Moret J, et al. Phenology of Ixodes ricinus and infection with Borrelia burgdorferi sensu lato along a north- and south-facing altitudinal gradient on Chaumont mountain Switzerland. J Med Entomol. 2007;44(4):683–93.
Article
Google Scholar
Gern L, Morán Cadenas F, Burri C. Influence of some climatic factors on Ixodes ricinus ticks studied along altitudinal gradients in two geographic regions in Switzerland. Int J Med Microbiol. 2008;298:55–9.
Article
Google Scholar
Daniel M, Danielova V, Kříž B, Jirsa A, Nožička J. Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in central Europe. Eur J Clin Microbiol Infect Dis. 2003;22(5):327–8.
Article
CAS
PubMed
Google Scholar
Materna J, Daniel M, Metelka L, Harčarik J. The vertical distribution, density and the development of the tick Ixodes ricinus in mountain areas influenced by climate changes (The Krkonoše Mts., Czech Republic). Int J Med Microbiol. 2008;298:25–37.
Article
Google Scholar
Danielova V, Rudenko N, Daniel M, Holubova J, Materna J, Golovchenko M, et al. Extension of Ixodes ricinus ticks and agents of tick-borne diseases to mountain areas in the Czech Republic. Int J Med Microbiol. 2006;296(Suppl 40):48–53.
Article
PubMed
Google Scholar
Aeschlimann A, Büttiker W, Diehl PA, Eichenberger G, Immler R, Weiss N. Présence d’Ixodes trianguliceps (Birula, 1895) et d’Ixodes apronophorus (Schultze, 1924) en Suisse (Ixodoidea; Ixodidae). Rev Suisse Zool. 1970;77:527–36.
Article
CAS
PubMed
Google Scholar
Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG, et al. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol. 2006;36(1):63–70.
Article
CAS
PubMed
Google Scholar
Ogden NH, Bigras-Poulin M, Hanincova K, Maarouf A, O’Callaghan CJ, Kurtenbach K. Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the North American tick Ixodes scapularis. J Theor Biol. 2008;254(3):621–32.
Article
CAS
PubMed
Google Scholar
Suss J, Klaus C, Gerstengarbe FW, Werner PC. What makes ticks tick? Climate change, ticks, and tick-borne diseases. J Travel Med. 2008;15(1):39–45.
Article
PubMed
Google Scholar
Perret JL, Rais O, Gern L. Influence of climate on the proportion of Ixodes ricinus nymphs and adults questing in a tick population. J Med Entomol. 2004;41(3):361–5.
Article
PubMed
Google Scholar
Houghton E. Climate change 1995: The science of climate change: contribution of Working Group I to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 1996.
Google Scholar
Talleklint L, Jaenson TG. Increasing geographical distribution and density of Ixodes ricinus (Acari: Ixodidae) in central and northern Sweden. J Med Entomol. 1998;35(4):521–6.
Article
CAS
PubMed
Google Scholar
Jore S, Vanwambeke SO, Viljugrein H, Isaksen K, Kristoffersen AB, Woldehiwet Z, et al. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasites Vectors. 2014;7:11.
Article
PubMed
PubMed Central
Google Scholar
Laaksonen M, Sajanti E, Sormunen JJ, Penttinen R, Hanninen J, Ruohomaki K, et al. Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerg Microbes Infect. 2017;65:e31.
Google Scholar
Hvidsten D, Frafjord K, Gray J, Henningsson A, Jenkins A, Kristiansen B, et al. The distribution limit of the common tick, Ixodes ricinus, and some associated pathogens in north-western Europe. Ticks Tick-borne Dis. 2020;2020:101388.
Article
Google Scholar
Randolph S, Green R, Hoodless A, Peacey M. An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol. 2002;32(8):979–89.
Article
PubMed
Google Scholar
Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors. 2013;6(1):1.
Article
PubMed
PubMed Central
Google Scholar
Hillyard PD. Ticks of north-west Europe. Shrewsbury: Field Studies Council; 1996.
Bowman AS, Nuttall PA. Ticks: biology, disease and control. Cambridge: Cambridge University Press; 2008.
Book
Google Scholar
Cotton MJ, Watts CH. The ecology of the tick Ixodes trianguliceps Birula (Arachnida; Acarina; Ixodoidea). Parasitology. 1967;57(3):525–31.
Article
CAS
PubMed
Google Scholar
Korenberg E, Lebedeva N. Distribution and some general features of the ecology of Ixodes trianguliceps Bir. in the Soviet Union. Folia Parasitol. 1969;162:143–52.
Google Scholar
Mysterud A, Byrkjeland R, Qviller L, Viljugrein H. The generalist tick Ixodes ricinus and the specialist tick Ixodes trianguliceps on shrews and rodents in a northern forest ecosystem—a role of body size even among small hosts. Parasites Vectors. 2015;8:639.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bown K, Begon M, Bennett M, Birtles R, Burthe S, Lambin X, et al. Sympatric Ixodes trianguliceps and Ixodes ricinus ticks feeding on field voles (Microtus agrestis): potential for increased risk of Anaplasma phagocytophilum in the United Kingdom? Vector-Borne Zoon Dis. 2006;6(4):404–10.
Article
CAS
Google Scholar
Piesman J, Gern L. Lyme borreliosis in Europe and North America. Parasitology. 2004;129(1):191–220.
Article
Google Scholar
Brown RN, Lane RS. Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science. 1992;256(5062):1439–42.
Article
CAS
PubMed
Google Scholar
Turner AK, Beldomenico PM, Bown K, Burthe S, Jackson J, Lambin X, et al. Host-parasite biology in the real world: the field voles of Kielder. Parasitology. 2014;141(8):997–1017.
Article
CAS
PubMed
Google Scholar
Stenseth NC. Geographic distribution of Clethrionomys species. Ann Zool Fen; 22(3):215–219.
Radzijevskaja J, Paulauskas A, Rosef O, Petkevicius S, Mazeika V, Rekasius T. The propensity of voles and mice to transmit Borrelia burgdorferi sensu lato infection to feeding ticks. Vet Parasitol. 2013;197(1–2):318–25.
Article
PubMed
Google Scholar
Randolph S. Quantifying parameters in the transmission of Babesia microti by the tick Ixodes trianguliceps amongst voles (Clethrionomys glareolus). Parasitology. 1995;110(3):287–95.
Article
PubMed
Google Scholar
Vayssier-Taussat M, Le Rhun D, Buffet JP, Maaoui N, Galan M, Guivier E, et al. Candidatus Neoehrlichia mikurensis in bank voles France. Emerg Infect Dis. 2012;18(12):2063–5.
Article
PubMed
PubMed Central
Google Scholar
Ogden NH, Bown K, Horrocks BK, Woldehiwet Z, Bennett M. Granulocytic Ehrlichia infection in ixodid ticks and mammals in woodlands and uplands of the U.K. Med Vet Entomol. 1998;12(4):423–9.
Article
CAS
PubMed
Google Scholar
Hanincova K, Schafer SM, Etti S, Sewell HS, Taragelova V, Ziak D, et al. Association of Borrelia afzelii with rodents in Europe. Parasitology. 2003;126(1):11–20.
Article
CAS
PubMed
Google Scholar
Sinski E, Pawelczyk A, Bajer A, Behnke JM. Abundance of wild rodents, ticks and environmental risk of Lyme borreliosis: a longitudinal study in an area of Mazury Lakes district of Poland. Ann Agric Environ Med. 2006;13(2):295.
CAS
Google Scholar
Lydecker HW, Banks PB, Hochuli DF. Counting ticks (Acari: Ixodida) on hosts is complex: a review and comparison of methods. J Med Entomol. 2019;56(6):1527–33.
Article
PubMed
Google Scholar
Wilson DE, Lacher TE, Jr, Mittermeier RA (editors). Handbook of the mammals of the world, volume 7. Rodents II. Barcelona: Lynx Edicions; 2017.
De Pelsmaeker N, Korslund L, Steifetten O. Do bank voles (Myodes glareolus) trapped in live and lethal traps show differences in tick burden? PLoS One. 2020;15(9):e0239029.
Article
PubMed
PubMed Central
CAS
Google Scholar
Perret JL, Guigoz E, Rais O, Gern L. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res. 2000;86(7):554–7.
Article
CAS
PubMed
Google Scholar
Lindsjö J, Fahlman Å, Törnqvist E. Animal welfare from mouse to moose—implementing the principles of the 3Rs in wildlife research. J Wildl Dis. 2016;52(2):65–77.
Article
Google Scholar
Mooring MS, McKenzie AA. The efficiency of patch sampling for determination of relative tick burdens in comparison with total tick counts. Exp App Acarol. 1995;19(9):533–47.
Article
CAS
Google Scholar
Arthur DR. British ticks. London: Butterworths; 1963.
R Development Core Team. R: A language and environment for statistical conputing. Vienna: R Foundation for Statistical Computing; 2019.
Harrison A, Bennett NC. The importance of the aggregation of ticks on small mammal hosts for the establishment and persistence of tick-borne pathogens: an investigation using the R0 model. Parasitology. 2012;1:1–9.
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis: Heidelberg: Springer; 2016.
Bown K, Lambin X, Telford G, Ogden N, Telfer S, Woldehiwet Z, et al. Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. App Environ Microbiol. 2008;74(23):7118–25.
Article
CAS
Google Scholar
Randolph SE. Seasonal dynamics of a host-parasite system: Ixodes trianguliceps (Acarina: Ixodidae) and its small mammal hosts. J Animal Ecol. 1975;44:2.
Article
Google Scholar
Dantas-Torres F, Otranto D. Seasonal dynamics of Ixodes ricinus on ground level and higher vegetation in a preserved wooded area in southern Europe. Vet Parasitol. 2013;192(1–3):253–8.
Article
PubMed
Google Scholar
Petney TN, Pfäffle MP, Skuballa JD. An annotated checklist of the ticks (Acari: Ixodida) of Germany. Sys App Acarol. 2012;17:2.
Google Scholar
Estrada-Peña A, Osacar J, Gortazar C, Calvete C, Lucientes J. An account of the ticks of the northeastern of Spain (Acarina: Ixodidae). Ann Parasitol Hum Comp. 1992;67(2):42–9.
Article
PubMed
Google Scholar
Schalk G, Forbes MR. Male biases in parasitism of mammals: effects of study type, host age, and parasite taxon. Oikos. 1997;1:67–74.
Article
Google Scholar
Zuk M, McKean KA. Sex differences in parasite infections: patterns and processes. Int J Parasitol. 1996;26(10):1009–24.
Article
CAS
PubMed
Google Scholar
Cordoba-Aguilar A, Munguia-Steyer R. The sicker sex: understanding male biases in parasitic infection, resource allocation and fitness. PLoS One. 2013;8(10):e76246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haapakoski M, Ylönen H. Effects of fragmented breeding habitat and resource distribution on behavior and survival of the bank vole (Myodes glareolus). Popul Ecol. 2010;52(3):427–35.
Article
Google Scholar
Crawley M. Movements and home-ranges of Clethrionomys glareolus Schreber and Apodemus sylvaticus L. in north-east England. Oikos. 1969;1:310–9.
Article
Google Scholar
Jahfari S, Coipan EC, Fonville M, Van Leeuwen AD, Hengeveld P, Heylen D, et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasites Vectors. 2014;7(1):365.
Article
PubMed
PubMed Central
Google Scholar
Hvidsten D, Stuen S, Jenkins A, Dienus O, Olsen RS, Kristiansen BE, et al. Ixodes ricinus and Borrelia prevalence at the Arctic Circle in Norway. Ticks Tick-borne Dis. 2014;5(2):107–12.
Article
PubMed
Google Scholar
Paulsen KM, Pedersen BN, Soleng A, Okbaldet YB, Pettersson JH, Dudman SG, et al. Prevalence of tick-borne encephalitis virus in Ixodes ricinus ticks from three islands in north-western Norway. APMIS. 2015;123(9):759–64.
Article
PubMed
Google Scholar
Soleng A, Edgar KS, Paulsen KM, Pedersen BN, Okbaldet YB, Skjetne IEB, et al. Distribution of Ixodes ricinus ticks and prevalence of tick-borne encephalitis virus among questing ticks in the Arctic Circle region of northern Norway. Ticks Tick Borne Dis. 2018;9(1):97–103.
Article
CAS
PubMed
Google Scholar
Smol JP. Climate Change: A planet in flux. Nature. 2012;483(7387):12–5.
Article
CAS
Google Scholar
Jaenson TG, Lindgren E. The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tick-borne Dis. 2011;2(1):44–9.
Article
PubMed
Google Scholar