Zhang ZQ. Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. New Zealand: Magnolia Press; 2011.
Google Scholar
Lindquist EE, Krantz GW, Walter DE. A manual of acarology. Lubbock: Texas Tech University Press; 2009.
Google Scholar
Oudemans AC. Studie over de sedert 1877 ontworpen systemen der Acari; nieuwe classificatie; phylogenetische beschouwingen. Tijdschr Entomol. 1923;66:49–85.
Google Scholar
Baker EW, Crabill RE, Nunes G. Guide to the families of mites. Southwest Nat. 1958;3:238.
Google Scholar
Woolley TA. A review of the phylogeny of mites. Annu Rev Entomol. 1961;6:263–84.
Google Scholar
Domes K, Althammer M, Norton RA, Scheu S, Maraun M. The phylogenetic relationship between Astigmata and Oribatida (Acari) as indicated by molecular markers. Exp Appl Acarol. 2007;42:159–71.
CAS
PubMed
Google Scholar
Norton RA. Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Exp Appl Acarol. 1998;22:559–94.
Google Scholar
Dabert M, Witalinski W, Kazmierski A, Olszanowski Z, Dabert J. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Mol Phylogenet Evol. 2010;56:222–41.
PubMed
Google Scholar
Pepato AR, Klimov PB. Origin and higher-level diversification of acariform mites—evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment. BMC Evol Biol. 2015;15:178.
CAS
PubMed
PubMed Central
Google Scholar
Klimov PB, Oconnor BM, Chetverikov PE, Bolton SJ, Pepato AR, Mortazavi AL, et al. Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a long branch. Mol Phylogenet Evol. 2018;119:105–17.
PubMed
Google Scholar
Subías LS, Shtanchaeva U, Arillo A. Listado de los acaros oribatidos(Acariformes, Oribatida) de las diferentes regiones biogeograficas del mundo. Monografías Electrónicas SEA. 2012;4:1–815.
Google Scholar
Norton RA, Behan-Pelletier VM. Suborder oribatida. Lubbock: Texas Tech University Press; 2009.
Google Scholar
Schaap P, Winckler T, Nelson M, Alvarezcurto E, Elgie B, Hagiwara H, et al. Molecular phylogeny and evolution of morphology in the social amoebas. Science. 2006;314:661–3.
CAS
PubMed
PubMed Central
Google Scholar
Schelly R, Salzburger W, Koblmüller S, Duftner N, Sturmbauer C. Phylogenetic relationships of the lamprologine cichlid genus Lepidiolamprologus (Teleostei: Perciformes) based on mitochondrial and nuclear sequences, suggesting introgressive hybridization. Mol Phylogenet Evol. 2006;38:426–38.
CAS
PubMed
Google Scholar
Petrusek A, Hobaek A, Nilssen JP, Skage M, Cerný M, Brede N, et al. A taxonomic reappraisal of the European Daphnia longispina complex (Crustacea, Cladocera, Anomopoda). Zool Scr. 2008;37:507–19.
Google Scholar
Harris AJ, Xiang QY, Thomas DT. Phylogeny, origin, and biogeographic history of Aesculus L. (Sapindales)—an update from combined analysis of DNA sequences, morphology, and fossils. Taxon. 2009;58:108–26.
Google Scholar
Schäffer S, Koblmüller S, Klymiuk I, Thallinger GG. The mitochondrial genome of the oribatid mite Paraleius leontonychus: new insights into tRNA evolution and phylogenetic relationships in acariform mites. Sci Rep. 2018;8:7558.
PubMed
PubMed Central
Google Scholar
Domes K, Maraun M, Scheu S, Cameron SL. The complete mitochondrial genome of the sexual oribatid mite Steganacarus magnus: genome rearrangements and loss of tRNAs. BMC Genomics. 2008;9:532.
PubMed
PubMed Central
Google Scholar
Klimov PB, Oconnor BM. Improved tRNA prediction in the American house dust mite reveals widespread occurrence of extremely short minimal tRNAs in acariform mites. BMC Genomics. 2009;10:598.
PubMed
PubMed Central
Google Scholar
Schattner P, Brook AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web-servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:686–9.
Google Scholar
Edwards DD, Jackson LE, Johnson AJ, Ernsting BR. Mitochondrial genome sequence of Unionicola parkeri (Acari: Trombidiformes: Unionicolidae): molecular synapomorphies between closely-related Unionicola gill mites. Exp Appl Acarol. 2011;54:105–17.
PubMed
Google Scholar
Xue XF, Deng W, Qu SX, Hong XY, Shao R. The mitochondrial genomes of sarcoptiform mites: are any transfer RNA genes really lost? BMC Genomics. 2018;19:466.
PubMed
PubMed Central
Google Scholar
Laslett D, Canback B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008;24:172–5.
CAS
PubMed
Google Scholar
Li WN, Xue XF. Mitochondrial genome reorganization provides insights into the relationship between oribatid mites and astigmatid mites (Acari: Sarcoptiformes: Oribatida). J Linn Soc Lond Zool. 2019;187:585–98.
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
CAS
PubMed
Google Scholar
Zhang SS, Alvarado AS. Planarian high molecular weight DNA isolation by spooling. Methods Mol Biol. 2018;1774:277–84.
CAS
PubMed
Google Scholar
Borgstrom E, Lundin S, Lundeberg J. Large scale library generation for high throughput sequencing. PLoS ONE. 2011;6:e19119.
PubMed
PubMed Central
Google Scholar
Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1:18–23.
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.
CAS
PubMed
PubMed Central
Google Scholar
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–9.
PubMed
Google Scholar
Lorenz R, Bernhart SH, Siederdissen CHZ, Tafer H, Flamm C, Stadler PF, Hofacker IL. ViennaRNA package 2.0. Algorithms Mol Biol. 2011;6:1–14.
Google Scholar
Irwin DM, Kocher TD, Wilson AC. Evolution of the cytochromeb gene of mammals. J Mol Evol. 1991;32:128–44.
CAS
PubMed
Google Scholar
Bernt M, Merkle D, Ramsch K, Fritzsch G, Perseke M, Bernhard D, et al. CREx: inferring genomic rearrangements based on common intervals. Bioinformatics. 2007;23:2957–8.
CAS
PubMed
Google Scholar
Tyagi K, Chakraborty R, Cameron SL, Sweet AD, Chandra K, Kumar V. Rearrangement and evolution of mitochondrial genomes in Thysanoptera (Insecta). Sci Rep. 2020;10:695.
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS
PubMed
PubMed Central
Google Scholar
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.
CAS
PubMed
Google Scholar
Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, et al. Geneious Ver 5.4. 2010. http://www.geneious.com/
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.
CAS
PubMed
Google Scholar
Ronquist F, Teslenko M, Der Mark PV, Ayres DL, Darling AE, Hohna S, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.
PubMed
PubMed Central
Google Scholar
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2017;34:772–3.
CAS
PubMed
Google Scholar
Alfaro ME, Zoller S, Lutzoni F. Bayes or bootstrap? A simulation study comparing the performance of bayesian markov chain monte carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol. 2003;20:255–66.
CAS
PubMed
Google Scholar
Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 1993;42:182–92.
Google Scholar
Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470–4.
CAS
PubMed
Google Scholar
Fang WX, Dong FY, Sun ET, Tao DD, Wang Y, Xu JY, et al. De novo sequence of the mitochondrial genome of Tyrophagus putrescentiae (Acari: Sarcoptiformes) including 22 tRNA sequences and the largest non-coding region. Exp Appl Acarol. 2020;80:521–30.
CAS
PubMed
Google Scholar
Cameron SL. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst Entomol. 2014;39:400–11.
Google Scholar
OConnor BM. Phylogenetic relationships among higher taxa in the Acariformes, with particular reference to the Astigmata. Chichester E Horwood. 1984;1:19–27.
Google Scholar
Norton RA, Bonamo PM, Grierson JD, Shear WA. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J Paleontol. 1988;62:259–69.
Google Scholar
Dunlop JA, Wirth S, Penney D, McNeil A, Bradley RS, Withers PJ, et al. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography. Biol Lett. 2012;8:457–60.
PubMed
Google Scholar
Xue XF, Guo JF, Dong Y, Hong XY, Shao RF. Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites. Sci Rep. 2016;6:18920.
CAS
PubMed
PubMed Central
Google Scholar
Seniczak S, Seniczak A, Coulson SJ. Morphological ontogeny, distribution and descriptive population parameters of Hermannia reticulata (Acari: Oribatida: Hermanniidae), with comments on Crotonioidea. Int J Acarology. 2017;43:52–72.
Google Scholar