IPCC. 4th Assessment Report “Climate Change 2007: Synthesis Report”; 2007. http://www.ipcc.ch/ipccreports/ar4-syr.htm. Accessed 24 Nov 2018.
IPCC. Cambio climático 2014. Informe de síntesis; 2014. https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf. Accessed 24 Nov 2018.
Wilke AB, Beier JC, Benelli G. Complexity of the relationship between global warming and urbanization—an obscure future for predicting increases in vector-borne infectious diseases. Curr Op Insect Sci. 2019;35:1–9.
Article
Google Scholar
Swei A, Couper LI, Coffey LL, Kapan D, Bennett S. Patterns, drivers, and challenges of vector-borne disease emergence. Vector-Borne Zoo Dis. 2020;3:159–70.
Article
Google Scholar
Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann New York Acad Sci. 2019;1:157.
Article
Google Scholar
Rocklöv J, Dubrow R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat Immunol. 2020;5:479–83.
Article
CAS
Google Scholar
Franklinos LH, Jones KE, Redding DW, Abubakar I. The effect of global change on mosquito-borne disease. Lancet Infec Dis. 2019;9:e302–12.
Article
Google Scholar
Bayles BR, Rusk A, Christofferson R, Agar G, Pineda MA, Chen B, Dagy K, Kelly E, Hummel T, Kuwada K, Martin S, Murrer A, Faerron GC. Spatiotemporal dynamics of vector-borne disease risk across human land-use gradients: examining the role of agriculture, indigenous territories, and protected areas in Costa Rica. Lancet Glob Health. 2020;8:S32.
Article
Google Scholar
Weinstein JS, Leslie TF, von Fricken ME. Spatial associations between land use and infectious disease: Zika Virus in Colombia. Int J Environ Res Pub Health. 2020;4:1127.
Article
Google Scholar
Ramalho-Ortigao M, Gubler DJ. Human diseases associated with vectors (arthropods in disease transmission). In: Hunter's tropical medicine and emerging infectious diseases; 2020. p. 1063–9.
Bayoh MN, Lindsay SW. Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol. 2004;2:174–9.
Article
Google Scholar
Paaijmans KP, Imbahale SS, Thomas MB, Takken W. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change. Malaria J. 2010;1:196.
Article
Google Scholar
Sternberg ED, Thomas MB. Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol. 2014;3:115–22.
Article
Google Scholar
Dodson BL, Kramer LD, Rasgon JL. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasit Vectors. 2012;5:199.
Article
PubMed
PubMed Central
Google Scholar
Elliot SL, de Rodrigues JO, Lorenzo MG, Martins-Filho OA, Guarneri AA. Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. PLoS Negl Trop Dis. 2015;9:e0003646.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ezeakacha NF, Yee DA. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit Vectors. 2019;12:123.
Article
PubMed
PubMed Central
Google Scholar
Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS ONE. 2013;3:e58824.
Article
CAS
Google Scholar
Delatte H, Gimonneau G, Triboire A, Fontenille D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol. 2009;1:33–41.
Article
Google Scholar
González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev. 2020;3:802–12.
Article
Google Scholar
de la Vega GJ, Schilman PE. Ecological and physiological thermal niches to understand distribution of Chagas disease vectors in Latin America. Med Vet Entomol. 2018;1:1–13.
Article
Google Scholar
Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, Rohr JR, Ryan SJ, Savage V, Shocket MS, Sippy R, Stewart Ibarra AM, Thomas MB, Villea O. Thermal biology of mosquito-borne disease. Ecol Lett. 2019;10:1690–708.
Article
Google Scholar
Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Lucas Sandri T, de Messias-Reason I. Chagas disease: from discovery to a worldwide health problem. Front Pub Health. 2019;7:166.
Article
Google Scholar
de Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, Córdoba-Aguilar A. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Trop. 2018;183:23–31.
Article
PubMed
Google Scholar
de Fuentes-Vicente JA, Gutiérrez-Cabrera AE. Kissing bugs (Triatominae). In: Reference module in biomedical science. Elsevier: 2020. ISBN 9780128012383. https://doi.org/10.1016/B978-0-12-818731-9.00010-0.
Tamayo LD, Guhl F, Vallejo GA, Ramírez JD. The effect of temperature increases on the development of Rhodnius prolixus and the course of Trypanosoma cruzi metacyclogenesis. PLoS Negl Trop Dis. 2018;8:e0006735.
Article
Google Scholar
González-Rete B, Salazar-Schettino PM, Bucio-Torres MI, Córdoba-Aguilar A, Cabrera-Bravo M. Activity of the prophenoloxidase system and survival of triatomines infected with different Trypanosoma cruzi strains under different temperatures: understanding Chagas disease in the face of climate change. Parasit Vectors. 2019;12:219.
Article
PubMed
PubMed Central
Google Scholar
Ramírez-González MG, Flores-Villegas AL, Salazar-Schettino PM, Gutiérrez-Cabrera AE, Rojas-Ortega E, Córdoba-Aguilar A. Zombie bugs? Manipulation of kissing bug behavior by the parasite Trypanosoma cruzi. Acta Trop. 2019;200:105177.
Article
PubMed
Google Scholar
Cordero-Montoya G, Flores-Villegas AL, Salazar-Schettino PM, Vences-Blanco MO, Rocha-Ortega M, Gutiérrez-Cabrera AE, Rojas-Ortega E, Córdoba-Aguilar A. The cost of being a killer’s accomplice: Trypanosoma cruzi impairs the fitness of kissing bugs. Parasitol Res. 2019;9:2523–9.
Article
Google Scholar
Bizai ML, Romina P, Antonela S, Olivera LV, Arias EE, Silvia M, Walter S, Diana F, Cristina D. Geographic distribution of Trypanosoma cruzi genotypes detected in chronic infected people from Argentina. Association with climatic variables and clinical manifestations of Chagas disease. Inf Gen Evol. 2020;78:104128.
Article
CAS
Google Scholar
Cruz-Saavedra L, Muñoz M, Patiño LH, Vallejo GA, Guhl F, Ramírez JD. Slight temperature changes cause rapid transcriptomic responses in Trypanosoma cruzi metacyclic trypomastigotes. Parasit Vectors. 2020;13:255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salazar-Schettino PM, Rojas-Wastavino GE, Cabrera-Bravo M, Bucio-Torres MI, Martínez-Ibarra JA, Monroy-Escobar MC, Rodas-Retana A, Guevara-Gómez Y, Vences-Blanco MO, Ruiz-Hernández AL, Torres-Gutiérrez E. A revision of thirteen species of Triatominae (Hemiptera: Reduviidae) vectors of Chagas disease in Mexico. J Selva Andina Res Soc. 2010;1:57–80.
Google Scholar
Favila-Ruiz G, Jiménez-Cortés JG, Córdoba-Aguilar A, Salazar-Schettino PM, Gutiérrez-Cabrera AE, Pérez-Torres A, de Fuentes-Vicente JA, Vences-Blanco MO, Bucio-Torres MI, Flores-Villegas AL, Cabrera-Bravo M. Effects of Trypanosoma cruzi on the phenoloxidase and prophenoloxidase activity in the vector Meccus pallidipennis (Hemiptera: Reduviidae). Parasit Vectors. 2018;11:434.
Article
PubMed
PubMed Central
CAS
Google Scholar
Arthurs S, Thomas MB. Effects of a mycoinsecticide on feeding and fecundity of the brown locust Locustana pardalina. Biocontrol Sci Technol. 2010;3:321–9.
Google Scholar
Thomas MB, Blanford S. Thermal biology in insect-parasite interactions. Trends Ecol Evol. 2003;7:344–50.
Article
Google Scholar
Kobayashi M, Inagaki S, Kawase S. Effect of high temperature on the development of nuclear polyhedrosis virus in the silkworm Bombyx mori. J Inver Path. 1981;3:386–94.
Article
Google Scholar
Sigsgaard L. The temperature-dependent duration of development and parasitism of three cereal aphid parasitoids, Aphidius ervi, A. rhopalosiphi, and Praon volucre. Entomol Exp et Applicata. 2000;2:173–84.
Article
Google Scholar
Higo H, Miura S, Horio M, Mimori T, Hamano S, Agatsuma T, Yanagi T, Cruz-Reyes A, Uyema N, Rojas de Arias A, Matta V, Akahane H, Hirayama K, Takeuchi T, Tada I, Himeno K. Genotypic variation among lineages of Trypanosoma cruzi and its geographic aspects. Parasitol Int. 2004;4:337–44.
Article
CAS
Google Scholar
Venegas J, Rojas T, Díaz F, Miranda S, Jercic MI, González C, Coñoepán W, Pichuantes S, Rodríguez J, Gajardo M, Sánchez G. Geographical structuring of Trypanosoma cruzi populations from Chilean Triatoma infestans triatomines and their genetic relationship with other Latino American counterparts. Ann Trop Med Parasitol. 2011;8:625–46.
Article
Google Scholar
Carrasco HJ, Segovia M, Llewellyn MS, Morocoima A, Urdaneta-Morales S, Martínez C, Martínez CE, Garcia C, Rodríguez M, Espinosa R, de Noya BA, Díaz-Bello Z, Herrera L, Fitzpatrick S, Yeo M, Miles M, Feliciangeli MD. Geographical distribution of Trypanosoma cruzi genotypes in Venezuela. PLoS Negl Trop Dis. 2012;6:e1707.
Article
PubMed
PubMed Central
Google Scholar
Dorn PL, McClure AG, Gallaspy MD, Waleckx E, Woods AS, Monroy MC, Stevens L. The diversity of the Chagas parasite, Trypanosoma cruzi, infecting the main Central American vector, Triatoma dimidiata, from Mexico to Colombia. PLoS Negl Trop Dis. 2017;9:e0005878.
Article
Google Scholar
Carrington LB, Seifert SN, Armijos MV, Lambrechts L, Scott TW. Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am J Trop Med Hyg. 2013;88:689–97.
Article
PubMed
PubMed Central
Google Scholar
Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Nat Acad Sci. 2011;108:7460–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pickles RS, Thornton D, Feldman R, Marques A, Murray DL. Predicting shifts in parasite distribution with climate change: a multitrophic level approach. Global Change Biol. 2013;9:2645–54.
Article
Google Scholar
Garza M, Arroyo TPF, Casillas EA, Sanchez-Cordero V, Rivaldi CL, Sarkar S. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios. PLoS Negl Trop Dis. 2014;5:e2818.
Article
Google Scholar
Villalobos G, Nava-Bolaños A, De Fuentes-Vicente JA, Téllez-Rendón JL, Huerta H, Martínez-Hernández F, Rocha-Ortega M, Gutiérrez-Cabrera AE, Ibarra-Cerdeña CN, Córdoba-Aguilar A. A reduction in ecological niche for Trypanosoma cruzi-infected triatomine bugs. Parasit Vectors. 2019;12:240.
Article
PubMed
PubMed Central
Google Scholar