Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10: e0004349. https://doi.org/10.1371/journal.pntd.0004349.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alemayehu B, Alemayehu M. Leishmaniasis: a review on parasite, vector and reservoir host. Heal Sci J. 2017;11:519. https://doi.org/10.21767/1791-809X.1000519.
Article
Google Scholar
Oryan A, Akbari M. Worldwide risk factors in leishmaniasis. Asian Pac J Trop Med. 2016;9:925–32. https://doi.org/10.1016/j.apjtm.2016.06.021.
Article
CAS
PubMed
Google Scholar
Hashiguchi Y, Gomez EA. Importance of Leishmania species and vector sand fly (Diptera: Psychodidae) identification. J Med Entomol. 2018;55:773–4. https://doi.org/10.1093/jme/tjy044.
Article
PubMed
Google Scholar
Galluzzi L, Ceccarelli M, Diotallevi A, Menotta M, Magnani M. Real-time PCR applications for diagnosis of leishmaniasis. Parasit Vectors. 2018;11:1–13. https://doi.org/10.1186/s13071-018-2859-8.
Article
CAS
Google Scholar
Dostálová A, Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasit Vectors. 2012;5:276. https://doi.org/10.1186/1756-3305-5-276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steverding D. The history of leishmaniasis. Parasit Vectors. 2017;10:82. https://doi.org/10.1186/s13071-017-2028-5.
Article
PubMed
PubMed Central
Google Scholar
Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392:951–70. https://doi.org/10.1016/s0140-6736(18)31204-2.
Article
PubMed
Google Scholar
Arenas R, Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J. Leishmaniasis: a review. F1000Res. 2017;6:750. https://doi.org/10.12688/f1000research.11120.1
Valero NNH, Uriarte M. Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitol Res. 2020;119:365–84. https://doi.org/10.1007/s00436-019-06575-5.
Article
PubMed
Google Scholar
Britto C, Ravel C, Bastien P, Blaenau C, Pagès M, Dedet JP, et al. Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene. 1998;222:107. https://doi.org/10.1016/S0378-1119(98)00472-7.
Article
CAS
PubMed
Google Scholar
Thomas S, Green A, Sturm NR, Campbell DA, Myler PJ. Histone acetylations mark origins of polycistronic transcription in Leishmania major. BMC Genomics. 2009;10:152. https://doi.org/10.1186/1471-2164-10-152.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grünebast J, Clos J. Leishmania: responding to environmental signals and challenges without regulated transcription. Computat Struct Biotechnol J. 2020;18:4016–23. https://doi.org/10.1016/j.csbj.2020.11.058.
Article
CAS
Google Scholar
Jensen BC, Phan IQ, McDonald JR, Sur A, Gillespie MA, Ranish JA, et al. Chromatin-associated protein complexes link DNA base J and transcription termination in leishmania. mSphere. 2021;6:e01204-e1220. https://doi.org/10.1128/mSphere.01204-20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clayton C. Regulation of gene expression in trypanosomatids: living with polycistronic transcription. Open Biol. 2019;9:1900072. https://doi.org/10.1098/rsob.190072.
Article
CAS
Google Scholar
Peacock CS, Seeger K, Harris D, Murphy L, Ruiz JC, Quail MA, et al. Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet. 2007;39:839–47. https://doi.org/10.1038/ng2053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brettmann EA, Shaik JS, Zangger H, Lye LF, Kuhlmann FM, Akopyants NS, et al. Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proc Natl Acad Sci USA. 2016;113:11998–2005. https://doi.org/10.1073/pnas.1615085113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kariyawasam R, Mukkala AN, Lau R, Valencia BM, Llanos-Cuentas A, Boggild AK. Virulence factor RNA transcript expression in the Leishmania Viannia subgenus: influence of species, isolate source, and Leishmania RNA virus-1. Trop Med Health. 2019;47:25. https://doi.org/10.1186/s41182-019-0153-x.
Article
PubMed
PubMed Central
Google Scholar
Llanes A, Restrepo CM, Del VG, Anguizola FJ, Lleonart R. The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus. Sci Rep. 2015;5:8550. https://doi.org/10.1038/srep08550.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diotallevi A, Buffi G, Ceccarelli M, Neitzke-Abreu HC, Gnutzmann LV, da Costa Lima MS, et al. Real-time PCR to differentiate among Leishmania (Viannia) subgenus, Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis: Application on Brazilian clinical samples. Acta Trop. 2020;201: 105178. https://doi.org/10.1016/j.actatropica.2019.105178.
Article
CAS
PubMed
Google Scholar
Soulat D, Bogdan C. Function of macrophage and parasite phosphatases in leishmaniasis. Front Immunol. 2017;8:1838. https://doi.org/10.3389/fimmu.2017.01838.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ovalle-Bracho C, Camargo C, Díaz-Toro Y, Parra-Muñoz M. Molecular typing of Leishmania (Leishmania) amazonensis and species of the subgenus Viannia associated with cutaneous and mucosal leishmaniasis in Colombia: a concordance study. Biomedica. 2018;38:86–95. https://doi.org/10.7705/biomedica.v38i0.3632.
Article
PubMed
Google Scholar
Marín M, Aguilar YA, Ramírez JR, Triana O, Muskus CE. Molecular and immunological analyses suggest the absence of hydrophilic surface proteins in Leishmania (Viannia) panamensis. Biomedica. 2008;28:423–32. https://doi.org/10.7705/biomedica.v28i3.80.
Article
PubMed
Google Scholar
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, et al. Leishmania infections: molecular targets and diagnosis. Mol Aspects Med. 2017;57:1–29. https://doi.org/10.1016/j.mam.2016.11.012.
Article
CAS
PubMed
Google Scholar
Fraga J, Montalvo AM, Van der Auwera G, Maes I, Dujardin JC, Requena JM. Evolution and species discrimination according to the Leishmania heat-shock protein 20 gene. Infect Genet Evol. 2013;18:229–37. https://doi.org/10.1016/j.meegid.2013.05.020.
Article
CAS
PubMed
Google Scholar
Fernandes AP, Canavaci AMC, McCall LI, Matlashewski G. A2 and other visceralizing proteins of Leishmania: Role in pathogenesis and application for vaccine development. Subcell Biochem. 2014;74:77–101. https://doi.org/10.1007/978-94-007-7305-9_3.
Article
CAS
PubMed
Google Scholar
Jain K, Jain NK. Vaccines for visceral leishmaniasis: A review. J Immunol Methods. 2015;422:1–12. https://doi.org/10.1016/j.jim.2015.03.017.
Article
CAS
PubMed
Google Scholar
Lindoso JAL, Costa JML, Queiroz IT, Goto H. Review of the current treatments for leishmaniases. Res Rep Trop Med. 2012;3:69–77. https://doi.org/10.2147/RRTM.S24764.
Article
PubMed
PubMed Central
Google Scholar
Eddaikra N, Ait-Oudhia K, Kherrachi I, Oury B, Multi-Mati F, Benikhlef R, et al. Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLoS Negl Trop Dis. 2018;12: e0006310. https://doi.org/10.1371/journal.pntd.0006310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balasegaram M, Ritmeijer K, Lima MA, Burza S, Ortiz Genovese G, Milani B, et al. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin Emerg Drugs. 2012;17:493–510. https://doi.org/10.1517/14728214.2012.748036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burza S, Sinha PK, Mahajan R, Lima MA, Mitra G, Verma N, et al. Five-year field results and long-term effectiveness of 20 mg/kg liposomal amphotericin B (Ambisome) for visceral leishmaniasis in Bihar. India PLoS Negl Trop Dis. 2014;8: e2603. https://doi.org/10.1371/journal.pntd.0002603.
Article
CAS
PubMed
Google Scholar
Vanlerberghe V, Diap G, Guerin PJ, Meheus F, Gerstl S, Van Der SP, et al. Drug policy for visceral leishmaniasis: a cost-effectiveness analysis. Trop Med Int Heal. 2007;12:274–83. https://doi.org/10.1111/j.1365-3156.2006.01782.x.
Article
CAS
Google Scholar
Sundar S, Chakravarty J. An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother. 2015;16:237–52. https://doi.org/10.1517/14656566.2015.973850.
Article
CAS
PubMed
Google Scholar
Sundar S, Chakravarty J, Meena LP. Leishmaniasis: treatment, drug resistance and emerging therapies. Expert Opin Orphan Drugs. 2019;7:1–10. https://doi.org/10.1080/21678707.2019.1552853.
Article
CAS
Google Scholar
Rojas R, Valderrama L, Valderrama M, Varona MX, Ouellette M, Saravia NG. Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. J Infect Dis. 2006;193:1375–83. https://doi.org/10.1086/503371.
Article
CAS
PubMed
Google Scholar
Denis S, Carla M, Khatima AO. Antimony resistance and environment: elusive links to explore during Leishmania life cycle. Int J Parasitol Drugs Drug Resist. 2012;2:200–3. https://doi.org/10.1016/j.ijpddr.2012.07.003.
Article
CAS
Google Scholar
Romero GA, Vinitius De Farias Guerra M, Gomes Paes M, de Oliveira Macêdo V. Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: clinical findings and diagnostic approach. Clin Infect Dis. 2001;32:1304–12. https://doi.org/10.4269/ajtmh.2001.65.456.
Article
CAS
PubMed
Google Scholar
Arevalo J, Ramirez L, Adaui V, Zimic M, Tulliano G, Miranda-Verástegui C, et al. Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. J Infect Dis. 2007;195:1846–51. https://doi.org/10.1086/518041.
Article
CAS
PubMed
Google Scholar
de Vries HJC, Reedijk SH, Schallig HDFH. Cutaneous leishmaniasis: recent developments in diagnosis and management. Am J Clin Dermatol. 2015;16:99–109. https://doi.org/10.1007/s40257-015-0114-z.
Article
PubMed
PubMed Central
Google Scholar
Borsari C, Jiménez-Antón MD, Eick J, Bifold E, Torrado JJ, Olías-Molero AI, et al. Discovery of a benzothiophene-flavonol halting miltefosine and antimonial drug resistance in Leishmania parasites through the application of medicinal chemistry, screening and genomics. Eur J Med Chem. 2019;183: 111676. https://doi.org/10.1016/j.ejmech.2019.111676.
Article
CAS
PubMed
Google Scholar
Zheng Z, Chen J, Ma G, Satoskar AR, Li J. Integrative genomic, proteomic and phenotypic studies of Leishmania donovani strains revealed genetic features associated with virulence and antimony-resistance. Parasit Vectors. 2020;13:510. https://doi.org/10.1186/s13071-020-04397-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dumetz F, Cuypers B, Imamura H, Zander D, D’Haenens E, Maes I, et al. Molecular preadaptation to antimony resistance in Leishmania donovani on the Indian Subcontinent. mSphere. 2018;3:e000548-17. https://doi.org/10.1128/mSphere.00548-17.
Article
Google Scholar
Andrade JM, Gonçalves LO, Liarte DB, Lima DA, Guimarães FG, de Melo RD, et al. Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines. Parasit Vectors. 2020;13:600. https://doi.org/10.1186/s13071-020-04486-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, et al. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. Int J Parasitol Drugs Drug Resist. 2018;8:246–64. https://doi.org/10.1016/j.ijpddr.2018.04.002.
Article
PubMed
PubMed Central
Google Scholar
Patino LH, Muskus C, Ramírez JD. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit Vectors. 2019;12:348. https://doi.org/10.1186/s13071-019-3603-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patino LH, Imamura H, Cruz-Saavedra L, Pavia P, Muskus C, Méndez C, et al. Major changes in chromosomal somy, gene expression and gene dosage driven by SbIII in Leishmania braziliensis and Leishmania panamensis. Sci Rep. 2019;9:9485. https://doi.org/10.1038/s41598-019-45538-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM, Warren WC, et al. Gene expression in Leishmania is regulated predominantly by gene dosage. MBio. 2017;8:e01393-e1417. https://doi.org/10.1128/mBio.01393-17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Restrepo CM, Llanes A, Cedeño EM, Chang JH, Álvarez J, Ríos M, et al. Environmental conditions may shape the patterns of genomic variations in Leishmania panamensis. Genes (Basel). 2019;10:838. https://doi.org/10.3390/genes10110838.
Article
CAS
Google Scholar
Leprohon P, Légaré D, Raymond F, Madore É, Hardiman G, Corbeil J, et al. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Res. 2009;37:1387–99. https://doi.org/10.1093/nar/gkn1069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monte-Neto R, Laffitte MCN, Leprohon P, Reis P, Frézard F, Ouellette M. Intrachromosomal amplification, locus deletion and point mutation in the Aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis. PLoS Negl Trop Dis. 2015;9: e0003476. https://doi.org/10.1371/journal.pntd.000347648.
Article
PubMed
PubMed Central
Google Scholar
Maharjan M, Madhubala R. Heat shock protein 70 (HSP70) expression in antimony susceptible/resistant clinical isolates of Leishmania donovani. Nepal J Biotechnol. 2015;3:22–8. https://doi.org/10.3126/njb.v3i1.14225.
Article
Google Scholar
Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, et al. Drug resistance and treatment failure in leishmaniasis: a 21st century challenge. PLoS Negl Trop Dis. 2017;11: e0006052. https://doi.org/10.1371/journal.pntd.0006052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verma A, Bhandari V, Deep DK, Sundar S, Dujardin JC, Singh R, et al. Transcriptome profiling identifies genes/pathways associated with experimental resistance to paromomycin in Leishmania donovani. Int J Parasitol Drugs Drug Resist. 2017;3:370–7. https://doi.org/10.1016/j.ijpddr.2017.10.004.
Article
Google Scholar
Depledge DP, Evans KJ, Ivens AC, Aziz N, Maroof A, Kaye PM, et al. Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis. 2009;3: e476. https://doi.org/10.1371/journal.pntd.0000476.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rochette A, Raymond F, Ubeda JM, Smith M, Messier N, Boisvert S, et al. Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics. 2008;9:255. https://doi.org/10.1186/1471-2164-9-255.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hefnawy A, Berg M, Dujardin JC, De Mulder G. Exploiting knowledge on Leishmania drug resistance to support the quest for new drugs. Trends Parasitol. 2017;33:162–74. https://doi.org/10.1016/j.pt.2016.11.003.
Article
CAS
PubMed
Google Scholar
Andrade JM, Murta SMF. Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum lines. Parasit Vectors. 2014;7:406. https://doi.org/10.1186/1756-3305-7-406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matrangolo FSV, Liarte DB, Andrade LC, De Melo MF, Andrade JM, Ferreira RF, et al. Comparative proteomic analysis of antimony-resistant and-susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Mol Biochem Parasitol. 2013;190:63–75. https://doi.org/10.1016/j.molbiopara.2013.06.006.
Article
CAS
PubMed
Google Scholar
Andrews S. FASTQC a quality control tool for high throughput sequence data. Babraham Inst. 2015. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2. https://doi.org/10.14806/ej.17.1.200
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aurrecoechea C, Barreto A, Basenko EY, Brestelli J, Brunk BP, Cade S, et al. EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res. 2017;45:D581–91. https://doi.org/10.1093/nar/gkw1105.
Article
CAS
PubMed
Google Scholar
Pertea M, Pertea G. GFF Utilities: GffRead and GffCompare. F1000Res. 2020;9:ISCB Comm J-304. https://doi.org/10.12688/f1000research.23297.2
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9. https://doi.org/10.1093/bioinformatics/btu638.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batut B, Hiltemann S, Bagnacani A, Baker D, Bhardwaj V, Blank C, et al. Community-driven data analysis training for biology. Cell Syst. 2018;6:752–8. https://doi.org/10.1016/j.cels.2018.05.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag New York. 2016. ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org.
Uliana SRB, Trinconi CT, Coelho AC. Chemotherapy of leishmaniasis: present challenges. Parasitology. 2018;145:464–80. https://doi.org/10.1017/S0031182016002523.
Article
CAS
PubMed
Google Scholar
Decuypere S, Vanaerschot M, Brunker K, Imamura H, Müller S, Khanal B, et al. Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background. PLoS Negl Trop Dis. 2012;6: e1514. https://doi.org/10.1371/journal.pntd.0001514.
Article
PubMed
PubMed Central
Google Scholar
Yardley V, Ortuño N, Llanos-Cuentas A, Chappuis F, De Doncker S, Ramirez L, et al. American tegumentary leishmaniasis: is antimonial treatment outcome related to parasite drug susceptibility? J Infect Dis. 2006;194:1168–75. https://doi.org/10.1086/507710.
Article
PubMed
Google Scholar
Vermeersch M, da Luz RI, Toté K, Timmermans JP, Cos P, Maes L. In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrob Agents Chemother. 2009;53:3855–9. https://doi.org/10.1128/AAC.00548-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogers MB, Hilley JD, Dickens NJ, Wilkes J, Bates PA, Depledge DP, et al. chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 2011;21:2129–42. https://doi.org/10.1101/gr.122945.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sterkers Y, Lachaud L, Crobu L, Bastien P, Pagès M. FISH analysis reveals aneuploidy and continual generation of chromosomal mosaicism in Leishmania major. Cell Microbiol. 2011;13:274–83. https://doi.org/10.1111/j.1462-5822.2010.01534.x.
Article
CAS
PubMed
Google Scholar
Downing T, Stark O, Vanaerschot M, Imamura H, Sanders M, Decuypere S, et al. Genome-wide SNP and microsatellite variation illuminate population-level epidemiology in the Leishmania donovani species complex. Infect Genet Evol. 2012;12:149–59. https://doi.org/10.1016/j.meegid.2011.11.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papadopoulou B, Ouellette M, Laffitte MCN, Leprohon P. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Res 2016;5:2350. https://doi.org/10.12688/f1000research.9218.1
Ubeda JM, Raymond F, Mukherjee A, Plourde M, Gingras H, Roy G, et al. Genome-wide stochastic adaptive DNA amplification at direct and inverted DNA repeats in the parasite Leishmania. PLoS Biol. 2014;12: e1001868. https://doi.org/10.1371/journal.pbio.1001868.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papadopoulou B, Ouellette M, Laffitte MCN, Leprohon P. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Res. 2016;5:2350. https://doi.org/10.12688/f1000research.9218.1
Douanne N, Wagner V, Roy G, Leprohon P, Ouellette M, Fernandez-Prada C. MRPA-independent mechanisms of antimony resistance in Leishmania infantum. Int J Parasitol Drugs Drug Resist. 2020;13:28–37. https://doi.org/10.1016/j.ijpddr.2020.03.003.
Article
PubMed
PubMed Central
Google Scholar
Barrera MC, Rojas LJ, Weiss A, Fernandez O, McMahon-Pratt D, Saravia NG, et al. Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Trop. 2017;176:355–63. https://doi.org/10.1016/j.actatropica.2017.08.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brotherton MC, Bourassa S, Leprohon P, Légaré D, Poirier GG, Droit A, et al. Proteomic and genomic analyses of antimony resistant Leishmania infantum mutant. PLoS ONE. 2013;8: e81899. https://doi.org/10.1371/journal.pone.0081899.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee A, Boisvert S, Monte-Neto RL do, Coelho AC, Raymond F, Mukhopadhyay R, et al. Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Mol Microbiol. 2013;88:189–202. https://doi.org/10.1111/mmi.12178
Acuña SM, Aoki JI, Laranjeira-Silva MF, Zampieri RA, Fernandes JCR, Muxel SM, et al. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis. PLoS One. 2017;12:e0187186. https:// doi.org/https://doi.org/10.1371/journal.pone.0187186
Singh N, Sundar S. Integrating genomics and proteomics permits identification of immunodominant antigens associated with drug resistance in human visceral leishmaniasis in India. Exp Parasitol. 2017;176:30–45. https://doi.org/10.1016/j.exppara.2017.02.019.
Article
CAS
PubMed
Google Scholar
Rabhi I, Rabhi S, Ben-Othman R, Rasche A, Daskalaki A, Trentin B, et al. Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view. PLoS Negl Trop Dis. 2012;6: e1763. https://doi.org/10.1371/journal.pntd.0001763.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh AK, Sardar AH, Mandal A, Saini S, Abhishek K, Kumar A, et al. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress. FASEB J. 2015;29:2081–98. https://doi.org/10.1096/fj.14-258624.
Article
CAS
PubMed
Google Scholar
Manzano JI, García-Hernández R, Castanys S, Gamarro F. A new ABC half-transporter in Leishmania major is involved in resistance to antimony. Antimicrob Agents Chemother. 2013;57:3719–30. https://doi.org/10.14806/ej.17.1.200
El Fadili K, Messier N, Leprohon P, Roy G, Guimond C, Trudel N, et al. Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother. 2005;49:1988–93. https://doi.org/10.1128/AAC.49.5.1988-1993.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Légaré D, Richard D, Mukhopadhyay R, Stierhof YD, Rosen BP, Hammer A, et al. The Leishmania ATP-binding Cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem. 2001;276:26301–7. https://doi.org/10.1074/jbc.M102351200.
Article
PubMed
Google Scholar
Mathur R, Das RP, Ranjan A, Shaha C. Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB J. 2015;29:4201–13. https://doi.org/10.1096/fj.15-272757.
Article
CAS
PubMed
Google Scholar
Frézard F, Monte-Neto R, Reis PG. Antimony transport mechanisms in resistant Leishmania parasites. Biophys Rev. 2014;6:119–32. https://doi.org/10.1007/s12551-013-0134-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naderer T, Ellis MA, Serene MF, De Souza DP, Curtis J, Handman E, et al. Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc Natl Acad Sci U S A. 2006;103:5502–7. https://doi.org/10.1073/pnas.0509196103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biyani N, Singh AK, Mandal S, Chawla B, Madhubala R. Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Mol Biochem Parasitol. 2011;179:91–9. https://doi.org/10.1016/j.molbiopara.2011.06.004.
Article
CAS
PubMed
Google Scholar
Opperdoes FR, Michels P a M. The metabolic repertoire of Leishmania and implications for drug discovery. Leishmania. Caister Academic Press. 2008. http://big.icp.ucl.ac.be/icp/trop/research/2008_Opperdoes.pdf
Singh K, Ali V, Pratap Singh K, Gupta P, Suman SS, Ghosh AK, et al. Deciphering the interplay between cysteine synthase and thiol cascade proteins in modulating Amphotericin B resistance and survival of Leishmania donovani under oxidative stress. Redox Biol. 2017;12:350–66. https://doi.org/10.1016/j.redox.2017.03.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar R, Tiwari K, Dubey VK. Methionine aminopeptidase 2 is a key regulator of apoptotic like cell death in Leishmania donovani. Sci Rep. 2017;7:95. https://doi.org/10.1038/s41598-017-00186-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shalev-Benami M, Zhang Y, Rozenberg H, Nobe Y, Taoka M, Matzov D, et al. Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin. Nat Commun. 2017;8:1589. https://doi.org/10.1038/s41467-017-01664-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Das S, Shah P, Baharia RK, Tandon R, Khare P, Sundar S, et al. Over-expression of 60s ribosomal L23a is associated with cellular proliferation in SAG resistant clinical isolates of Leishmania donovani. PLoS Negl Trop Dis. 2013;7: e2527. https://doi.org/10.1371/journal.pntd.0002527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranjan R, Das P, Vijayakumar S. Differentially modulated proteins associated with leishmaniasis—a systematic review of in-vivo and in-vitro studies. Mol Biol Rep. 2020;47:9159–78. https://doi.org/10.1016/j.molbiopara.2011.06.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avila CC, Mule SN, Rosa-Fernandes L, Viner R, Barisón MJ, Costa-Martins AG, et al. Proteome-wide analysis of Trypanosoma cruzi exponential and stationary growth phases reveals a subcellular compartment-specific regulation. Genes (Basel). 2018;9:413. https://doi.org/10.3390/genes9080413.
Article
CAS
Google Scholar
Jaremko D, Ciganda M, Christen L, Williams N. Trypanosoma brucei L11 is essential to ribosome biogenesis and interacts with the kinetoplastid-specific proteins P34 and P37. mSphere. 2019;4:e00475-e519. https://doi.org/10.1128/msphere.00475-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaremko D, Ciganda M, Williams N. Trypanosoma brucei homologue of regulator of ribosome synthesis 1 (Rrs1) has direct interactions with essential trypanosome-specific proteins. mSphere. 2019;4:e00453-e519. https://doi.org/10.1128/msphere.00453-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romaniuk MA, Frasch AC, Cassola A. Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi. PLoS Pathog. 2018;14: e1007059. https://doi.org/10.1371/journal.ppat.1007059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohebali M, Kazemirad E, Hajjaran H, Kazemirad E, Oshaghi MA, Raoofian R, et al. Gene expression analysis of antimony resistance in Leishmania tropica using quantitative real-time PCR focused on genes involved in trypanothione metabolism and drug transport. Arch Dermatol Res. 2019;311:9–17. https://doi.org/10.1007/s00403-018-1872-2.
Article
CAS
PubMed
Google Scholar
Potvin J-E, Leprohon P, Queffeulou M, Sundar S, Ouellette M. Mutations in an aquaglyceroporin as a proven marker of antimony clinical resistance in the parasite Leishmania donovani. Clin Infect Dis. 2021;72:e526–32. https://doi.org/10.1093/cid/ciaa1236.
Article
CAS
PubMed
Google Scholar
Rashidi S, Kalantar K, Fernandez-Rubio C, Anvari E, Nguewa P, Hatam G. Chitin binding protein as a possible RNA binding protein in Leishmania parasites. Pathog Dis. 2020;78:ftaa007. https://doi.org/10.1093/femspd/ftaa007
Mukherjee S, Santara S Sen, Das S, Bose M, Roy J, Adak S. NAD(P)H Cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by increased oxidative stress and cell death. J Biol Chem. 2012;287:34992–35003. https://doi.org/10.1074/jbc.M112.389338
Mukherjee A, Adhikari A, Das P, Biswas S, Mukherjee S, Adak S. Loss of virulence in NAD(P)H cytochrome b5 oxidoreductase deficient Leishmania major. Biochem Biophys Res Commun. 2018;503:371–7. https://doi.org/10.1016/j.bbrc.2018.06.037.
Article
CAS
PubMed
Google Scholar
Fernández OL, Diaz-Toro Y, Ovalle C, Valderrama L, Muvdi S, Rodríguez I, et al. Miltefosine and antimonial drug susceptibility of Leishmania Viannia Species and populations in regions of high transmission in colombia. PLoS Negl Trop Dis. 2014;8: e2871. https://doi.org/10.1371/journal.pntd.0002871.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeddi F, Mary C, Aoun K, Harrat Z, Bouratbine A, Faraut F, et al. heterogeneity of molecular resistance patterns in antimony-resistant field isolates of Leishmania species from the western Mediterranean area. Antimicrob Agents Chemother. 2014;58:4866–74. https://doi.org/10.1128/AAC.02521-13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bañuls AL, Hide M, Prugnolle F. Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Adv Parasitol. 2007;64:1–109. https://doi.org/10.1016/S0065-308X(06)64001-3.
Article
PubMed
Google Scholar
Chakravarty J, Sundar S. Drug resistance in leishmaniasis. J Glob Infect Dis. 2010;2:167–76. https://doi.org/10.4103/0974-777X.62887.
Article
PubMed
PubMed Central
Google Scholar
Haldar AK, Sen P, Roy S. Use of antimony in the treatment of leishmaniasis: current status and future directions. Mol Biol Int. 2011;2011: 571242. https://doi.org/10.4061/2011/571242.
Article
PubMed
PubMed Central
Google Scholar
Croft SL, Sundar S, Fairlamb AH. Drug resistance in leishmaniasis. Clin Microbiol Rev. 2006;19:111–26. https://doi.org/10.1128/CMR.19.1.111-126.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2009;38:D457–62. https://doi.org/10.1093/nar/gkp851.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quijada L, Soto M, Alonso C, Requena JM. Identification of a putative regulatory element in the 3’-untranslated region that controls expression of HSP70 in Leishmania infantum. Mol Biochem Parasitol. 2000;110:79–91. https://doi.org/10.1016/S0166-6851(00)00258-9.
Article
CAS
PubMed
Google Scholar
Rastrojo A, Carrasco-Ramiro F, Martín D, et al. The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genomics. 2013;14:223. https://doi.org/10.1186/1471-2164-14-223.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dillon LAL, Okrah K, Hughitt KV, Suresh R, Li Y, Fernandes MC, et al. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic Acids Res. 2015;43:6799–813. https://doi.org/10.1093/nar/gkv656.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michaeli S. Trans-splicing in trypanosomes: Machinery and its impact on the parasite transcriptome. Future Microbiol. 2011;6:459–74. https://doi.org/10.2217/fmb.11.20.
Article
CAS
PubMed
Google Scholar
Clayton CE. Gene expression in Kinetoplastids. Curr Opin Microbiol. 2016;32:46–51. https://doi.org/10.1016/j.mib.2016.04.018.
Article
CAS
PubMed
Google Scholar
Urrea DA, Duitama J, Imamura H, Álzate JF, Gil J, Muñoz N, et al. Genomic analysis of Colombian Leishmania panamensis strains with different level of virulence. Sci Rep. 2018;8:17336. https://doi.org/10.1038/s41598-018-35778-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rugani JN, Quaresma PF, Gontijo CF, Soares RP, Monte-Neto RL. Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: antimony resistance in human isolates from atypical lesions. Biomed Pharmacother. 2018;108:1170–80. https://doi.org/10.1016/j.biopha.2018.09.149.
Article
CAS
PubMed
Google Scholar
Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, et al. Whole-genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 2011;21:2143–56. https://doi.org/10.1101/gr.123430.111.
Article
CAS
PubMed
PubMed Central
Google Scholar