WHO. World malaria report. World Health Organization, Geneva. 2020.
de Souza D, Kelly-Hope L, Lawson B, Wilson M, Boakye D. Environmental factors associated with the distribution of Anopheles gambiae s.s in Ghana; an important vector of lymphatic filariasis and malaria. PLoS ONE. 2010;5:e9927.
Article
PubMed
PubMed Central
CAS
Google Scholar
Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malar J. 2012;11:271.
Article
PubMed
PubMed Central
Google Scholar
Kisinza WN, Nkya TE, Kabula B, Overgaard HJ, Massue DJ, Mageni Z, et al. Multiple insecticide resistance in Anopheles gambiae from Tanzania : a major concern for malaria vector control. Malar J. 2017;16:439.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dabiré RK, Namountougou M, Sawadogo SP, Yaro LB, Toé HK, Ouari A, et al. Population dynamics of Anopheles gambiae s.l. in Bobo-Dioulasso city: bionomics, infection rate and susceptibility to insecticides. Parasit Vectors. 2012;5:127.
Article
PubMed
PubMed Central
Google Scholar
Sherrard-Smith E, Skarp JE, Beale AD, Fornadel C, Norris LC, Moore SJ, et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci U S A. 2019;116:15086–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tusting LS. Larval source management: a supplementary measure for malaria control. Outlooks Pest Manag. 2014;25:41–3.
Article
Google Scholar
Eba K, Duchateau L, Olkeba BK, Boets P, Bedada D, Goethals PLM, et al. Bio-control of Anopheles mosquito larvae using invertebrate predators to support human health programs in Ethiopia. Int J Environ Res Public Health. 2021;18:1810.
Article
PubMed
PubMed Central
Google Scholar
Shaalan EAS, Canyon DV. Aquatic insect predators and mosquito control. Trop Biomed. 2009;26:223–61.
PubMed
Google Scholar
Collins CM, Bonds JAS, Quinlan MM, Mumford JD. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. Med Vet Entomol. 2019;33:1–15.
Article
CAS
PubMed
Google Scholar
Tchouassi DP, Quakyi IA, Addison EA, Bosompem KM, Wilson MD, Appawu MA, et al. Characterization of malaria transmission by vector populations for improved interventions during the dry season in the Kpone-on-sea area of coastal Ghana. Parasit Vectors. 2012;5:212.
Article
PubMed
PubMed Central
Google Scholar
Coetzee M, Hunt RH, Wilkerson R, Della Torre A, Coulibaly MB, Besansky NJ. Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex. Zootaxa. 2013;3619:246–74.
Article
PubMed
Google Scholar
Sinka ME. Global distribution of the dominant vector species of malaria. UK: Intechopen; 2018. p. 1–37. https://doi.org/10.5772/54163
Book
Google Scholar
Barrón MG, Paupy C, Rahola N, Akone-Ella O, Ngangue MF, Wilson-Bahun TA, et al. A new species in the major malaria vector complex sheds light on reticulated species evolution. Sci Rep. 2019;9:14753.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharower MG, Latif MA, Uddin SM. Temporal distribution and abundance of mosquito vectors in Dhaka city. J Asiat Soc Bangladesh Sci. 2020;46:27–35.
Article
Google Scholar
White GB. Anopheles bwambae sp.n., a malaria vector in the Semliki Valley, Uganda, and its relationships with other sibling species of the An.gambiae complex (Diptera: Culicidae). Syst Entomol. 1985;10:501–22.
Article
Google Scholar
Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, et al. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle east: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3:117.
Article
PubMed
PubMed Central
Google Scholar
Edillo FE, Touré YT, Lanzaro GC, Dolo G, Taylor CE. Spatial and habitat distribution of Anopheles gambiae and Anopheles arabiensis (Diptera: Culicidae) in Banambani Village. Mali J Med Entomol. 2002;39:70–7.
Article
PubMed
Google Scholar
Gimonneau G, Pombi M, Choisy M, Morand S, Dabiré RK, Simard F. Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa. Med Vet Entomol. 2012;26:9–17.
Article
CAS
PubMed
Google Scholar
Dida GO, Gelder FB, Anyona DN, Abuom PO, Onyuka JO, Matano AS, et al. Presence and distribution of mosquito larvae predators and factors influencing their abundance along the Mara River, Kenya and Tanzania. Springerplus. 2015;4:136.
Article
PubMed
PubMed Central
Google Scholar
Banerjee S, Aditya G, Saha N, Saha GK. An assessment of macroinvertebrate assemblages in mosquito larval habitats-space and diversity relationship. Environ Monit Assess. 2009;168:597–611.
Article
PubMed
Google Scholar
Ong’Wen F, Onyango PO, Bukhari T. Direct and indirect effects of predation and parasitism on the Anopheles gambiae mosquito. Parasit Vectors. 2020;13:43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roux O, Vantaux A, Roche B, Yameogo KB, Dabiré KR, Diabaté A, et al. Evidence for carry-over effects of predator exposure on pathogen transmission potential. Proc R Soc B Biol Sci. 2015;282:20152430.
Article
CAS
Google Scholar
Munga S, Minakawa N, Zhou G, Barrack O-OJ, Githeko AK, Yan G. Effects of larval competitors and predators on oviposition site selection of Anopheles gambiae sensu tricto. J Med Entomol. 2006;43:221–4.
Article
PubMed
Google Scholar
Warburg A, Faiman R, Shtern A, Silberbush A, Markman S, Cohen JE, et al. Oviposition habitat selection by Anopheles gambiae in response to chemical cues by Notonecta maculata. J Vector Ecol. 2011;36:421–5.
Article
PubMed
Google Scholar
Herrera-Varela M, Lindh J, Lindsay SW, Fillinger U. Habitat discrimination by gravid Anopheles gambiae sensu lato—a push-pull system. Malar J. 2014;13:133.
Article
PubMed
PubMed Central
Google Scholar
Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G. Spatial distribution and habitat characterization of anopheline mosquito larvae in western Kenya. Am J Trop Med Hyg. 1999;61:1010–10106.
Article
CAS
PubMed
Google Scholar
Ndenga BA, Simbauni JA, Mbugi JP, Githeko AK, Fillinger U. Productivity of malaria vectors from different habitat types in the western Kenya highlands. PLoS ONE. 2011;6:e19473.
Article
CAS
PubMed
PubMed Central
Google Scholar
Musiime AK, Smith DL, Kilama M, Geoffrey O, Kyagamba P, Rek J, et al. Identification and characterization of immature Anopheles and culicines (Diptera: Culicidae) at three sites of varying malaria transmission intensities in Uganda. Malar J. 2020;19:221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dida GO, Anyona DN, Abuom PO, Akoko D, Adoka SO, Matano A, et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect Dis Poverty. 2018;18(7):2.
Article
Google Scholar
Emidi B, Kisinza WN, Mmbando BP, Malima R, Mosha FW. Effect of physico-chemical parameters on Anopheles and Culex mosquito larvae abundance in different breeding sites in a rural setting of Muheza, Tanzania. Parasit Vectors. 2017;10:304.
Article
PubMed
PubMed Central
Google Scholar
Chen H, Githeko AK, Zhou G, Githure JI, Yan G. New records of Anopheles arabiensis breeding on the Mount Kenya highlands indicate indigenous malaria transmission. Malar J. 2006;5:17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogola EO, Odero JO, Mwangangi JM, Masiga DK, Tchouassi DP. Population genetics of Anopheles funestus, the African malaria vector, Kenya. Parasit Vectors. 2019;12:15.
Article
PubMed
PubMed Central
Google Scholar
Temu EA, Minjas JN, Coetzee M, Hunt RH, Shiff CJ. The role of four anopheline species (Diptera: Culicidae) in malaria transmission in coastal Tanzania. Trans R Soc Trop Med Hyg. 1998;92:152–8.
Article
CAS
PubMed
Google Scholar
Onen H, Odong R, Chemurot M, Kayondo J. Biotic and abiotic factors in Anopheles gambiae breeding habitats as a potential tool to fight malaria in Central Uganda. J Dis Glob Heal. 2019;12:12–20.
Google Scholar
Nambunga IH, Ngowo HS, Mapua SA, Hape EE, Msugupakulya BJ, Msaky DS, et al. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J. 2020;19:219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kabbale FG, Anne MA, John BK, Enock M, Anne K, Anges Y, et al. Molecular identification of Anopheles gambiae sensu stricto Giles (formerly Anopheles gambiae Savannah Form) in Kamuli district, Uganda. Afr J Biotechnol. 2016;15:39.
Google Scholar
Kang SY, Battle KE, Gibson HS, Cooper LV, Maxwell K, Kamya M, et al. Heterogeneous exposure and hotspots for malaria vectors at three study sites in Uganda. Gates Open Res. 2018;13:32.
Article
Google Scholar
UBOS. Uganda bureau of statistic: The national population and housing census 2014— Main report, Kampala, Uganda. Uganda Bur Stats. 2016;50–80. https://www.ubos.org. Accessed 17 Mar 2021.
Anon. Kayunga 3-year district development plan 2010–2013. 2010. https://kayunga.go.ug.
UNMA. Uganda national meteorological authority. 2016. p. 1–7. http://www.unma.go.ug. Accessed 17 Mar 2021.
Gerber A, Gabriel MJM. Aquatic invertebrates of South African Rivers Field Guide. 2002. p. 1–78.
Gill K. Identification guide to freshwater macro-invertebrates. 2015. p. 1–6.
Hopkins GHE. Mosquitoes of the Ethiopian region I. Larval bionomics of mosquitoes and taxonomy of culicine larvae. 2nd ed. London: British museum (Natural history); 1952.
Rozeboom LE, Stone A. Keys to the anopheline mosquitoes of the world with notes on their identification, distribution, biology, and relation to malaria. J Am Med Assoc. 1945;128:551.
Article
Google Scholar
Shannon CE, Weaver W. The mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423.
Article
Google Scholar
Mbonye AK, Bygbjerg IC, Magnussen P. Prevention and treatment practices and implications for malaria control in Mukono district Uganda. J Biosoc Sci. 2008;40:283–96.
Article
CAS
PubMed
Google Scholar
Mereta ST, Yewhalaw D, Boets P, Ahmed A, Duchateau L, Speybroeck N, et al. Physico-chemical and biological characterization of anopheline mosquito larval habitats (Diptera: Culicidae): implications for malaria control. Parasit Vectors. 2013;6:320.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ohba SY, Kawada H, Dida GO, Juma D, Sonye G, Minakawa N, et al. Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) larvae in wetlands, western Kenya: Confirmation by polymerase chain reaction method. J Med Entomol. 2010;47:783–7.
Article
PubMed
Google Scholar
Futami K, Sonye G, Akweywa P, Kaneko S, Minakawa N. Diving behavior in Anopheles gambiae (Diptera: Culicidae): Avoidance of a predacious wolf spider (Araneae: Lycosidae) in relation to life stage and water depth. J Med Entomol. 2008;45:1050–6.
Article
PubMed
Google Scholar
Wellborn GA, Skelly DK, Werner EE. Mechanisms creating community structure across a freshwater habitat gradient. Annu Rev Ecol Syst. 1996;27:337–63.
Article
Google Scholar
Collinson NH, Biggs J, Corfield A, Hodson MJ, Walker D, Whitfield M, et al. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biol Conserv. 1995;74:125–33.
Article
Google Scholar
Svitok M, Novikmec M, Ocadlik M. Local, among-site, and regional diversity patterns of benthic macroinvertebrates in high altitude water bodies : do ponds differ from lakes ? Hydrobiologia. 2014;273:41–52.
Google Scholar
Williams P, Whitfield M, Biggs J, Bray S, Fox G, Nicolet P, et al. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in southern England. Biol Conserv. 2004;115:329–41.
Article
Google Scholar
Porst G, Naughton O, Gill L, Johnston P, Irvine K. Adaptation, phenology and disturbance of macroinvertebrates in temporary water bodies. Zootaxa. 2012;696:47–62.
Google Scholar
Corbet PS. The life-history of the emperor dragonfly Anax imperator Leach (Odonata: Aeshnidae). J Anim Ecol. 1957;26:1–69.
Article
Google Scholar
Nolte U, Tietböhl RS, Mccafferty WP. A mayfly from tropical Brazil capable of tolerating short-term dehydration. J North Am Benthol Soc. 1996;15:87–94.
Article
Google Scholar
Hamza AM, El REA. A qualitative evidence of the breeding sites of Anopheles arabiensis patton (Diptera: Culicidae) in and around Kassala town, eastern Sudan. Int J Insect Sci. 2016;8:65–70.
Article
PubMed
PubMed Central
Google Scholar
Chirebvu E, Chimbari MJ. Characteristics of Anopheles arabiensis larval habitats in Tubu village, Botswana. J Vector Ecol. 2015;40:129–38.
Article
PubMed
Google Scholar
Gilbreath TM, Kweka EJ, Afrane YA, Githeko AK, Yan G. Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen. Parasit Vectors. 2013;6:353.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhattacharya S, Basu P, Sajal BC. The southern house mosquito, Culex quinquefasciatus: profile of a smart vector. J Entomol Zool Stud JEZS. 2016;4:73–81.
Google Scholar
Mayanja M, Mutebi J-P, Crabtree MB, Ssenfuka F, Muwawu T, Lutwama JJ. Abundance of mosquitoes of Mpigi district, central Uganda. J Entomol Zool Stud. 2014;2:317–22.
PubMed
PubMed Central
Google Scholar
Mutebi J-P, Crabtree MB, Crockett RJK, Powers AM, Lutwama JJ, Miller BR. Mosquitoes of western Uganda. J Med Entomol. 2012;49:1289–306.
Article
PubMed
Google Scholar
Bastille-Rousseau G, Rayl ND, Ellington EH, Schaefer JA, Peers MJL, Mumma MA, et al. Temporal variation in habitat use, co-occurrence, and risk among generalist predators and a shared prey. Can J Zool. 2016;94:191–8.
Article
Google Scholar
Hartman R, Pope K, Lawler S. Factors mediating co-occurrence of an economically valuable introduced fish and its native frog prey. Conserv Biol. 2013;28:763–72.
Article
PubMed
Google Scholar
Léandri-Breton DJ, Bêty J. Vulnerability to predation may affect species distribution: plovers with broader arctic breeding range nest in safer habitat. Sci Rep. 2020;10:5032.
Article
PubMed
PubMed Central
CAS
Google Scholar
Millon A, Nielsen JT, Bretagnolle V, Møller AP. Predator-prey relationships in a changing environment: the case of the sparrowhawk and its avian prey community in a rural area. J Anim Ecol. 2009;78:1086–95.
Article
PubMed
Google Scholar
Aditya G, Ash A, Saha GK. Predatory activity of Rhantus sikkimensis and larvae of Toxorhynchites splendens on mosquito larvae in Darjeeling. India J Vector Borne Dis. 2006;43:66–72.
PubMed
Google Scholar
Chandra G, Mandal SK, Ghosh AK, Das D. Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera : Dytiscidae). BMC Infect Dis. 2008;8:138.
Article
PubMed
PubMed Central
Google Scholar
Masumoto T, Masumoto T, Yoshida M, Nishikawa Y. Water conditions of the habitat of the water spider Argyroneta aquatica (Araneae: Argyronetidae) in Mizoro pond. Acta Arachnol. 1998;47:121–4.
Article
Google Scholar
Schütz D, Taborsky M. Adaptations to an aquatic life may be responsible for the reversed sexual size dimorphism in the water spider Argyroneta aquatica. Evol Ecol Res. 2003;5:105–17.
Google Scholar