ECDC. European Centre for Disease Prevention and Control and European Food Safety Authority. Ixodes ricinus - current known distribution: May 2020. Stockholm. 2020. https://www.ecdc.europa.eu/en/publications-data/ixodes-ricinus-current-known-distribution-may-2020.
Sprong H, Azagi T, Hoornstra D, Nijhof AM, Knorr S, Baarsma ME, et al. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasit Vectors. 2018;11:1.
Article
Google Scholar
Smith R, Takkinen J. Lyme borreliosis: Europe-wide coordinated surveillance and action needed? Euro Surveill. 2006;11:2977.
Google Scholar
Hofhuis A, Harms M, van den Wijngaard C, Sprong H, van Pelt W. Continuing increase of tick bites and Lyme disease between 1994 and 2009. Ticks Tick Borne Dis. 2015;6:69–74.
Article
PubMed
Google Scholar
Dubrey SW, Bhatia A, Woodham S, Rakowicz W. Lyme disease in the United Kingdom. Postgrad Med J. 2014;90:33–42.
Article
PubMed
Google Scholar
Kunze U. The International Scientific Working Group on Tick-Borne Encephalitis (ISW TBE): review of 17 years of activity and commitment. Ticks Tick Borne Dis. 2016;7:399.
Article
PubMed
Google Scholar
Vandekerckhove O, De Buck E, Van Wijngaerden E. Lyme disease in Western Europe an emerging problem? A systematic review. Acta Clin Belgica. 2019. https://doi.org/10.1080/17843286.2019.1694293.
Article
Google Scholar
Holding M, Dowall SD, Medlock JM, Carter DP, McGinley L, Curran-French M, et al. Detection of new endemic focus of tick-borne encephalitis virus (TBEV), Hampshire/Dorset border, England, september 2019. Euro Surveill. 2019;24:1900658.
Article
PubMed Central
Google Scholar
Koenen F, Pascucci I, Jaenson TGT, Madder M, de Sousa R, Estrada-Peña A, et al. Tick-borne infections including zoonoses in europe and the mediterranean basin. In: Salman M, Tarrescall J, editors., et al., Ticks and tick-borne diseases geographical distribution and control strategies in the Euro-Asian region. Wallingford: CABI Publishing; 2012.
Google Scholar
Azagi T, Hoornstra D, Kremer K, Hovius JWR, Sprong H. Evaluation of disease causality of rare ixodes ricinus-borne infections in Europe. Pathogens. 2020. https://doi.org/10.3390/pathogens9020150.
Article
PubMed
PubMed Central
Google Scholar
Davidson MM, Williams H, Macleod JAJ. Louping ill in man: A forgotten disease. J Infect. 1991;23:241–9.
Article
CAS
PubMed
Google Scholar
Weststrate AC, Knapen D, Laverman GD, Schot B, Prick JJ, Spit SA, et al. Increasing evidence of tick-borne encephalitis (TBE) virus transmission, the Netherlands, June 2016. Euro Surveill. 2017;22:30482.
Article
PubMed
PubMed Central
Google Scholar
Hovius JWR, De Wever B, Sohne M, Brouwer MC, Coumou J, Wagemakers A, et al. A case of meningoencephalitis by the relapsing fever spirochaete Borrelia miyamotoi in Europe. Lancet. 2013;382:658.
Article
PubMed
PubMed Central
Google Scholar
Scottish Natural Heritage. Updating the estimates of national trends and regional differences in red deer densities on open-hill ground in Scotland. 2019.
VisitScotland. Insight Department: Highland Factsheet 2019. 2020. https://www.visitscotland.org/binaries/content/assets/dotorg/pdf/research-papers-2/regional-factsheets/highland-factsheet-2019.pdf.
Scottish Government. Draft climate change plan, The draft third report on policies and proposals 2017–2032. 2017.
Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. Infect Genet Evol. 2012;12:1788–809.
Article
PubMed
Google Scholar
Jalovecka M, Sojka D, Ascencio M, Schnittger L. Babesia life cycle—when phylogeny meets biology. Trends Parasitol. 2019;35:356–68.
Article
PubMed
Google Scholar
Schreeg ME, Marr HS, Tarigo JL, Cohn LA, Bird DM, Scholl EH, et al. Mitochondrial genome sequences and structures aid in the resolution of Piroplasmida phylogeny. PLoS ONE. 2016;11:165702.
Article
CAS
Google Scholar
James MC. The ecology, genetic diversity and epidemiology of Lyme borreliosis in Scotland (PhD thesis). University of Aberdeen, 2010.
Gandy SL. The impacts of host community composition on Lyme disease risk in Scotland (PhD thesis). University of Glasgow, 2020.
Ruiz-Fons F, Gilbert L. The role of deer as vehicles to move ticks, Ixodes ricinus, between contrasting habitats. Int J Parasitol. 2010;40:1013–20.
Article
PubMed
Google Scholar
Wielinga PR, Gaasenbeek C, Fonville M, De Boer A, De Vries A, Dimmers W, et al. Longitudinal analysis of tick densities and Borrelia, Anaplasma, and Ehrlichia infections of Ixodes ricinus ticks in different habitat areas in the Netherlands. Appl Environ Microbiol. 2006;72:7594–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heylen D, Tijsse E, Fonville M, Matthysen E, Sprong H. Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol. 2013;15:663–73.
Article
PubMed
Google Scholar
Jahfari S, Fonville M, Hengeveld P, Reusken C, Scholte EJ, Takken W, et al. Prevalence of Neoehrlichia mikurensis in ticks and rodents from North–west Europe. Parasit Vectors. 2012. https://doi.org/10.1186/1756-3305-5-74.
Article
PubMed
PubMed Central
Google Scholar
Courtney JW, Kostelnik LM, Zeidner NS, Massung RF. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol. 2004;42:3164–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jahfari S, Coipan EC, Fonville M, Van Leeuwen AD, Hengeveld P, Heylen D, et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors. 2014;7:365.
Article
PubMed
PubMed Central
Google Scholar
Krawczyk AI, Van Duijvendijk GLA, Swart A, Heylen D, Jaarsma RI, Jacobs FHH, et al. Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk. Parasit Vectors. 2020. https://doi.org/10.1186/s13071-020-3902-0.
Article
PubMed
PubMed Central
Google Scholar
Heylen D, Fonville M, van Leeuwen AD, Sprong H. Co-infections and transmission dynamics in a tick-borne bacterium community exposed to songbirds. Environ Microbiol. 2016;18:988–96.
Article
PubMed
Google Scholar
Øines Ø, Radzijevskaja J, Paulauskas A, Rosef O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasit Vectors. 2012;5:156.
Article
PubMed
PubMed Central
Google Scholar
Coipan EC, Fonville M, Tijsse-Klasen E, van der Giessen JWB, Takken W, Sprong H, et al. Geodemographic analysis of Borrelia burgdorferi sensu lato using the 5S–23S rDNA spacer region. Infect Genet Evol. 2013;17:216–22.
Article
CAS
PubMed
Google Scholar
Jaarsma RI, Sprong H, Takumi K, Kazimirova M, Silaghi C, Mysterud A, et al. Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit Vectors. 2019. https://doi.org/10.1186/s13071-019-3583-8.
Article
PubMed
PubMed Central
Google Scholar
Kazimírová M, Hamšíková Z, Špitalská E, Minichová L, Mahríková L, Caban R, et al. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasit Vectors. 2018. https://doi.org/10.1186/s13071-018-3068-1.
Article
PubMed
PubMed Central
Google Scholar
Millins C, Gilbert L, Johnson P, James M, Kilbride E, Birtles R, et al. Heterogeneity in the abundance and distribution of Ixodes ricinus and Borrelia burgdorferi (sensu lato) in Scotland: implications for risk prediction. Parasit Vectors. 2016;9:595.
Article
PubMed
PubMed Central
Google Scholar
James MC, Bowman AS, Forbes KJ, Lewis F, McLeod JE, Gilbert L. Environmental determinants of Ixodes ricinus ticks and the incidence of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in Scotland. Parasitology. 2013;140:237–46.
Article
CAS
PubMed
Google Scholar
Hansford KM, Fonville M, Jahfari S, Sprong H, Medlock JM. Borrelia miyamotoi in host-seeking Ixodes ricinus ticks in England. Epidemiol Infect. 2015;143:1079–87.
Article
CAS
PubMed
Google Scholar
Hansford KM, Fonville M, Gillingham EL, Coipan EC, Pietzsch ME, Krawczyk AI, et al. Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England. Ticks Tick Borne Dis. 2017;8:353–61.
Article
PubMed
Google Scholar
Bettridge J, Renard M, Zhao F, Bown KJ, Birtles RJ. Distribution of Borrelia burgdorferi sensu lato in Ixodes ricinus populations across central Britain. Vector Borne Zoonotic Dis. 2013;13:139–46.
Article
PubMed
Google Scholar
Hall J. Ecology of Borrelia burgdorferi sensu lato and epidemiology of borrelial infections in Cumbria. University of Salford, 2018.
Cull B, Hansford K, McGinley L, Gillingham E, Vaux A, Smith R, et al. A nationwide study on Borrelia burgdorferi s.l. infection rates in questing Ixodes ricinus: a six year snapshot study in protected recreational areas in England and Wales. Med Vet Entomol. 2021. https://doi.org/10.1111/mve.12503.
Article
PubMed
Google Scholar
Bown KJ, Lambin X, Telford GR, Ogden NH, Telfer S, Woldehiwet Z, et al. Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl Environ Microbiol. 2008;74:7118–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tijsse-Klasen E, Jameson LJ, Fonville M, Leach S, Sprong H, Medlock JM. First detection of spotted fever group rickettsiae in Ixodes ricinus and Dermacentor reticulatus ticks in the UK. Epidemiol Infect. 2011;139:524–9.
Article
CAS
PubMed
Google Scholar
James MC, Gilbert L, Bowman AS, Forbes KJ. The heterogeneity, distribution, and environmental associations of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in Scotland. Front Public Heal. 2014;2:1–10.
Google Scholar
Hilpertshauser H, Deplazes P, Schnyder M, Gern L, Mathis A. Babesia spp. identified by PCR in ticks collected from domestic and wild ruminants in Southern Switzerland. Appl Environ Microbiol. 2006;72:6503–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum-a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol. 2013. https://doi.org/10.3389/fcimb.2013.00031.
Article
PubMed
PubMed Central
Google Scholar
The Scottish Government. Scotland’s Wild Deer: a national approach, including 2015–2020 priorities. 2016. https://www.nature.scot/scotlands-wild-deer-national-approach-2015-2020-priorities.
Strnad M, Hönig V, Růžek D, Grubhoffer L, Rego ROM. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl Environ Microbiol. 2017. https://doi.org/10.1128/AEM.00609-17.
Article
PubMed
PubMed Central
Google Scholar
Mysterud A, Stigum VM, Jaarsma RI, Sprong H. Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-41686-0.
Article
PubMed
PubMed Central
Google Scholar
Millins C, Magierecka A, Gilbert L, Edoff A, Brereton A, Kilbride E, et al. An invasive mammal (the gray squirrel, Sciurus carolinensis) commonly hosts diverse and atypical genotypes of the zoonotic pathogen Borrelia burgdorferi sensu lato. Appl Environ Microbiol. 2015;81:4236–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majerová K, Hönig V, Houda M, Papežík P, Fonville M, Sprong H, et al. Hedgehogs, squirrels, and blackbirds as sentinel hosts for active surveillance of Borrelia miyamotoi and Borrelia burgdorferi complex in urban and rural environments. Microorganisms. 2020;8:1–16.
Article
CAS
Google Scholar
Gurnell J, Lurz P, Bertoldi W. The changing patterns in the distribution of red and grey squirrels in the North of England and Scotland between 1991 and 2010 based on volunteer surveys. Hystrix. 2014;25:83–9.
Google Scholar
Coipan EC, Jahfari S, Fonville M, Oei GA, Spanjaard L, Takumi K, et al. Imbalanced presence of Borrelia burgdorferi s.l. multilocus sequence types in clinical manifestations of Lyme borreliosis. Infect Genet Evol. 2016;42:66–76.
Article
CAS
PubMed
Google Scholar
Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet. 2012;379:461–73.
Article
PubMed
Google Scholar
Margos G, Sing A, Fingerle V. Published data do not support the notion that Borrelia valaisiana is human pathogenic. Infection. 2017;45:567–9.
Article
PubMed
Google Scholar
Jiang JF, Zheng YC, Jiang RR, Li H, Huo QB, Jiang BG, et al. Epidemiological, clinical, and laboratory characteristics of 48 cases of “Babesia venatorum” infection in China: a descriptive study. Lancet Infect Dis. 2015;15:196–203.
Article
PubMed
Google Scholar
Zhao L, Jiang R, Jia N, Ning N, Zheng Y, Huo Q, et al. Human case infected with Babesia venatorum: a 5-year follow-up study. Open Forum Infect Dis. 2020. https://doi.org/10.1093/ofid/ofaa062.
Article
PubMed
PubMed Central
Google Scholar
Gray A, Capewell P, Loney C, Katzer F, Shiels BR, Weir W. Sheep as host species for zoonotic Babesia venatorum, United Kingdom. Emerg Infect Dis. 2019;25:2257–60.
Article
PubMed
PubMed Central
Google Scholar
Smith FD, Wall LER. Prevalence of Babesia and Anaplasma in ticks infesting dogs in Great Britain. Vet Parasitol. 2013;198:18–23.
Article
PubMed
Google Scholar
Michel AO, Mathis A, Ryser-Degiorgis MP. Babesia spp. in European wild ruminant species: parasite diversity and risk factors for infection. Vet Res. 2014;45:65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zanet S, Trisciuoglio A, Bottero E, De Mera IGF, Gortazar C, Carpignano MG, et al. Piroplasmosis in wildlife: Babesia and Theileria affecting free-ranging ungulates and carnivores in the Italian Alps. Parasit Vectors. 2014. https://doi.org/10.1186/1756-3305-7-70.
Article
PubMed
PubMed Central
Google Scholar
Zintl A, Mulcahy G, Skerrett HE, Taylor SM, Gray JS. Babesia divergens, a bovine blood parasite of veterinary and zoonotic importance. Clin Microbiol Rev. 2003;16:622–36.
Article
PubMed
PubMed Central
Google Scholar
Bock R, Jackson L, De Vos A, Jorgensen W. Babesiosis of cattle. Parasitology. 2004;129:S247.
Article
PubMed
Google Scholar
Herwaldt BL, Cacciò S, Gherlinzoni F, Aspöck H, Slemenda SB, Piccaluga PP, et al. Molecular characterization of a non-Babesia divergens organism causing zoonotic babesiosis in Europe. Emerg Infect Dis. 2003;9:942–8.
Article
CAS
PubMed
Google Scholar
Qi C, Zhou D, Liu J, Cheng Z, Zhang L, Wang L, et al. Detection of Babesia divergens using molecular methods in anemic patients in Shandong Province, China. Parasitol Res. 2011;109:241–5.
Article
PubMed
Google Scholar
Haapasalo K, Suomalainen P, Sukura A, Siikamäki H, Sakari JT. Fatal babesiosis in man, Finland, 2004. Emerg Infect Dis. 2010;16:1116–8.
Article
PubMed
PubMed Central
Google Scholar
Johnson N, Phipps P, Godbole G, Hansford K, Johnston C, White M, et al. Preventing tick exposure in vets and farmers. Vet Rec. 2020. https://doi.org/10.1136/vr.m3334.
Article
PubMed
Google Scholar
Young KM, Corrin T, Wilhelm B, Uhland C, Greig J, Mascarenhas M, et al. Zoonotic Babesia: a scoping review of the global evidence. PLoS ONE. 2019;14:e0226781.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sprong H, Wielinga PR, Fonville M, Reusken C, Brandenburg AH, Borgsteede F, et al. Ixodes ricinus ticks are reservoir hosts for Rickettsia helvetica and potentially carry flea-borne Rickettsia species. Parasit Vectors. 2009. https://doi.org/10.1186/1756-3305-2-41.
Article
PubMed
PubMed Central
Google Scholar
Stańczak J, Racewicz M, Michalik J, Buczek A. Distribution of Rickettsia helvetica in Ixodes ricinus tick populations in Poland. Int J Med Microbiol. 2008;298:231–4.
Article
Google Scholar
Wölfel R, Terzioglu R, Kiessling J, Wilhelm S, Essbauer S, Pfeffer M, et al. Rickettsia spp. in Ixodes ricinus ticks in Bavaria, Germany. Ann NY Acad Sci. 2006;1078:509–11.
Article
CAS
PubMed
Google Scholar
Rehacek J, Kocianova E, Lukacova M, Stanek G, Khanakah G, Vyrostekova V, et al. Detection of spotted fever group (SFG) rickettsia in Ixodes ricinus ticks in Austria. Acta Virol. 1997;41:355–6.
CAS
PubMed
Google Scholar
Prosenc K, Petrovec M, Trilar T, Duh D, Avšič-Županc T. Detection of rickettsiae in Ixodes ricinus ticks in Slovenia. Ann NY Acad Sci. 2003;990:201–4.
Article
PubMed
Google Scholar
Fernández-Soto P, Pérez-Sánchez R, Encinas-Grandes A, Sanz RÁ. Detection and identification of Rickettsia helvetica and Rickettsia sp. IRS3/IRS4 in Ixodes ricinus ticks found on humans in Spain. Eur J Clin Microbiol Infect Dis. 2004;23:648–9. https://doi.org/10.1007/s10096-004-1184-7.
Article
PubMed
Google Scholar
Fournier PE, Grunnenberger F, Jaulhac B, Gastinger G, Raoult D. Evidence of Rickettsia helvetica infection in humans, Eastern France. Emerg Infect Dis. 2000;6:389–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nilsson K, Lindquist O, Påhlson C. Association of Rickettsia helvetica with chronic perimyocarditis in sudden cardiac death. Lancet. 1999;354:1169–73.
Article
CAS
PubMed
Google Scholar
Nilsson K. Septicaemia with Rickettsia helvetica in a patient with acute febrile illness, rash and myasthenia. J Infect. 2009;58:79–82.
Article
CAS
PubMed
Google Scholar
Scarpulla M, Barlozzari G, Salvato L, De Liberato C, Lorenzetti R, Macrì G. Rickettsia helvetica in human-parasitizing and free-living Ixodes ricinus from urban and wild green areas in the metropolitan city of Rome, Italy. Vector Borne Zoonotic Dis. 2018;18:404–7.
Article
PubMed
PubMed Central
Google Scholar
Mardosaitė-Busaitienė D, Radzijevskaja J, Balčiauskas L, Paulauskas A. First detection of Rickettsia helvetica in small mammals in Lithuania. New Microbes New Infect. 2018;22:19–23.
Article
PubMed
PubMed Central
Google Scholar
Fischer S, Spierling NG, Heuser E, Kling C, Schmidt S, Rosenfeld UM, et al. High prevalence of Rickettsia helvetica in wild small mammal populations in Germany. Ticks Tick Borne Dis. 2018;9:500–5.
Article
PubMed
Google Scholar
Pedersen BN, Jenkins A, Kjelland V. Tick-borne pathogens in Ixodes ricinus ticks collected from migratory birds in southern Norway. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0230579.
Article
PubMed
PubMed Central
Google Scholar
Tully JG, Rose DL, Yunker CE, Carle P, Bove JM, Williamson DL, et al. Spiroplasma ixodetis sp. nov., a new species from Ixodes pacificus ticks collected in Oregon. Int J Syst Bacteriol. 1995;45:23–8.
Article
CAS
PubMed
Google Scholar
Bell-Sakyi L, Palomar AM, Kazimirova M. Isolation and propagation of a Spiroplasma sp. from Slovakian Ixodes ricinus ticks in Ixodes spp. cell lines. Ticks Tick Borne Dis. 2015;6:601–6.
Article
PubMed
PubMed Central
Google Scholar
Subramanian G, Sekeyova Z, Raoult D, Mediannikov O. Multiple tick-associated bacteria in Ixodes ricinus from Slovakia. Ticks Tick Borne Dis. 2012;3:406–10.
Article
PubMed
Google Scholar
Binetruy F, Bailly X, Chevillon C, Martin OY, Bernasconi MV, Duron O. Phylogenetics of the Spiroplasma ixodetis endosymbiont reveals past transfers between ticks and other arthropods. Ticks Tick Borne Dis. 2019;10:575–84.
Article
PubMed
Google Scholar
Lorenz B, Schroeder J, Reischl U. First evidence of an endogenous Spiroplasma sp. infection in humans manifesting as unilateral cataract associated with anterior uveitis in a premature baby. Graefes Arch Clin Exp Ophthalmol. 2002;240:348–53.
Article
CAS
PubMed
Google Scholar
Matet A, Le Flèche-Matéos A, Doz F, Dureau P, Cassoux N. Ocular spiroplasma ixodetis in Newborns, France. Emerg Infect Dis. 2020;26:340–4.
Article
PubMed
PubMed Central
Google Scholar
Portillo A, Santibáñez P, Palomar AM, Santibáñez S, Oteo JA. Candidatus Neoehrlichia mikurensis in Europe. New Microbes New Infect. 2018;22:30–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siński E, Bajer A, Welc R, Pawełczyk A, Ogrzewalska M, Behnke JM. Babesia microti: Prevalence in wild rodents and Ixodes ricinus ticks from the Mazury Lakes District of north-eastern Poland. Int J Med Microbiol. 2006;296:137–43.
Article
CAS
PubMed
Google Scholar
Abdullah S, Helps C, Tasker S, Newbury H, Wall R. Prevalence and distribution of Borrelia and Babesia species in ticks feeding on dogs in the U.K. Med Vet Entomol. 2018;32:14–22.
Article
CAS
PubMed
Google Scholar
Rǎileanu C, Tauchmann O, Vasić A, Wöhnke E, Silaghi C. Borrelia miyamotoi and Borrelia burgdorferi (sensu lato) identification and survey of tick-borne encephalitis virus in ticks from north-eastern Germany. Parasit Vectors. 2020;13:106.
Article
CAS
PubMed
PubMed Central
Google Scholar