Stoltzfus JD, Minot S, Berriman M, Nolan TJ, Lok JB. RNAseq analysis of the parasitic nematode Strongyloides stercoralis reveals divergent regulation of canonical dauer pathways. PLoS Negl Trop Dis. 2012;6:e1854.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blaxter M, Koutsovoulos G. The evolution of parasitism in Nematoda. Parasitology. 2015;142(Suppl 1):S26-39.
Article
PubMed
Google Scholar
Holterman M, Karegar A, Mooijman P, Van Megen H, Van Den Elsen S, Vervoort MTW, et al. Disparate gain and loss of parasitic abilities among nematode lineages. PLoS ONE. 2017;12:e0185445.
Article
PubMed
PubMed Central
CAS
Google Scholar
Roeber F, Jex AR, Gasser RB. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance—an Australian perspective. Parasites Vectors. 2013;6:153.
Article
PubMed
PubMed Central
Google Scholar
Payne L, Fitchett JR. Bringing neglected tropical diseases into the spotlight. Trends Parasitol. 2010;26:421–3.
Article
PubMed
Google Scholar
Zajíčková M, Nguyen LT, Skálová L, Raisová Stuchlíková L, Matoušková P. Anthelmintics in the future: current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov Today. 2020;25:430–7.
Article
PubMed
CAS
Google Scholar
Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Tahna MZ. Current nematode threats to world agriculture. In: Jones JT, Gheysen G, Fenoll C, editors. Genomics and molecular genetics of plant–nematode interactions. Dordrecht: Springer; 2011. p. 21–44.
Chapter
Google Scholar
Holterman M, Van Der Wurff A, Van Den Elsen S, Van Megen H, Bongers T, Holovachov O, et al. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol Biol Evol. 2006;23(9):1792–800.
Article
CAS
PubMed
Google Scholar
Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, et al. A molecular evolutionary framework for the phylum Nematoda. Nature. 1998;392:71–5.
Article
CAS
PubMed
Google Scholar
Sudhaus W. Preadaptive plateau in Rhabditida (Nematoda) allowed the repeated evolution of zooparasites, with an outlook on evolution of life cycles within Spiroascarida. Palaeodiversity. 2010;3:117–30.
Google Scholar
Withers P, Cooper CE. Dormancy. In: Fath B, editor. Encyclopedia of ecology. 2nd ed. Amsterdam: Elsevier; 2018. p. 309–10.
Google Scholar
Perry RN, Moens M. Survival of the parasitic nematode outside the host. In: Perry RN, Wharton DA, editors. Molecular and physiological basis of nematode survival. 1st ed. Cambridge: CABI Publishing; 2011. p. 1–27.
Chapter
Google Scholar
Wang B, Ma L, Wang F, Wang B, Hao X, Xu J, et al. Low temperature extends the lifespan of Bursaphelenchus xylophilus through the cGMP pathway. Int J Mol Sci. 2017;18:2320.
Article
PubMed Central
CAS
Google Scholar
Banyer RJ, Fisher JM. Seasonal variation in hatching of eggs of Heterodera avenae. Nematologica. 1971;17:225–36.
Article
Google Scholar
Perry RN. Dormancy and hatching of nematode eggs. Parasitol Today. 1989;5:377–83.
Article
CAS
PubMed
Google Scholar
Cassada RC, Russell RL. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol. 1975;46:326–42.
Article
CAS
PubMed
Google Scholar
O’Riordan VB, Burnell AM. Intermediary metabolism in the dauer larva of the nematode Caenorhabditis elegans-II. The glyoxylate cycle and fatty-acid oxidation. Comp Biochem Physiol. 1990;95:125–30.
Google Scholar
Wadsworth WG, Riddle DL. Developmental regulation of energy metabolism in Caenorhabditis elegans. Dev Biol. 1989;173:167–73.
Article
Google Scholar
Penkov S, Erkut C, Oertel J, Galli R, Vorkel D, Verbavatz M, et al. A metabolic switch regulates the transition between growth and diapause in C. elegans. BMC Biol. 2020;18:1–20.
Article
Google Scholar
Schaedel ON, Gerisch B, Antebi A, Sternberg PW. Hormonal signal amplification mediates environmental conditions during development and controls an irreversible commitment to adulthood. PLoS Biol. 2012;10:1–18.
Article
CAS
Google Scholar
Lee H, Choi MK, Lee D, Kim HS, Hwang H, Kim H, et al. Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci. 2012;15:107–12.
Article
CAS
Google Scholar
Hallem EA, Dillman AR, Hong AV, Zhang Y, Yano JM, Demarco SF, et al. A sensory code for host seeking in parasitic nematodes. Curr Biol. 2011;21:377–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riddle D. Genetic and environmental regulation of dauer larva development. In: Riddle D, Blumenthal T, Meyer BJ, Priess JR, editors. C. elegans II. 2nd ed. Cold Spring Harbor Mongraph Series. New York: Cold Spring Harbor Laboratory Press; 1997.
Google Scholar
Crook M. The dauer hypothesis and the evolution of parasitism: 20 years on and still going strong. Int J Parasitol. 2014;44:1–8.
Article
PubMed
Google Scholar
Bird AF, Bird J. Growth and molting. In: Bird AF, Bird J, editors. The structure of nematodes. 2nd ed. San Diego: Academic Press; 1991. p. 75–95.
Chapter
Google Scholar
Ewald CY, Castillo-Quan JI, Blackwell TK. Untangling longevity, dauer, and healthspan in Caenorhabditis elegans insulin/IGF-1-signalling. Gerontology. 2019;64:96–104.
Article
CAS
Google Scholar
Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science. 1998;282:2028–33.
Article
CAS
PubMed
Google Scholar
Hunt VL, Tsai IJ, Coghlan A, Reid AJ, Holroyd N, Foth BJ, et al. The genomic basis of parasitism in the Strongyloides clade of nematodes. Nat Genet. 2016;48:299–307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernot JP, Rudy G, Erickson PT, Ratnappan R, Haile M, Rosa BA, et al. Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism. Int J Parasitol. 2020;50:603–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol. 2020;18(6):e3000723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gang SS, Castelletto ML, Yang E, Ruiz F, Brown TM, Bryant AS, et al. Chemosensory mechanisms of host seeking and infectivity in skin-penetrating nematodes. PNAS. 2020;117:17913–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng S, Long J, Liu Z, Tao W, Wang D. Identification and evolution of TGF-β signaling pathway members in twenty-four animal species and expression in tilapia. Int J Mol Sci. 2018;19:1–21.
Google Scholar
Patterson GI, Padgett RW. TGFβ-related pathways: roles in Caenorhabditis elegans development. Trends Genet. 2000;16:27–33.
Article
CAS
PubMed
Google Scholar
Murphy CT, Hu PJ. Insulin/insulin-like growth factor signaling in C. elegans. WormBook. Ed. the C. elegans Research Community; 2013.
Gerisch B, Antebi A. Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development. 2004;131:1765–76.
Article
CAS
PubMed
Google Scholar
Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell. 2006;124:1209–23.
Article
CAS
PubMed
Google Scholar
Srinivasan J, Sternberg PW. Pristionchus pacificus: an appropriate fondness for beetles. Nat Methods. 2008;40:1146–7.
CAS
Google Scholar
Poinar GOJ. Entomogenous nematodes: a manual and host list of insect-nematode associations. Leiden: Brill; 1975.
Google Scholar
Li TM, Chen J, Li X, Ding XJ, Wu Y, Zhao LF, et al. Absolute quantification of a steroid hormone that regulates development in Caenorhabditis elegans. Anal Chem. 2013;85:9281–7.
Article
CAS
PubMed
Google Scholar
Van Megen H, Van Den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, et al. A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology. 2009;11:927–50.
Article
CAS
Google Scholar
Grant W, Viney M. The dauer phenomenon. In: Perry RN, Wharton D, editors. Molecular and physiological basis of nematode survival. 1st ed. Cambridge: CAB International; 2011. p. 311.
Google Scholar
Viney ME. How did parasitic worms evolve? BioEssays. 2009;31:496–9.
Article
CAS
PubMed
Google Scholar
Anderson RC. The superfamily Trichostrongyloidea. In: Nematode parasites of vertebrates: their development and transmission. New York: CABI Publishing; 2000. p. 671.
Google Scholar
Hotez P, Hawdon J, Schad GA. Hookworm larval infectivity, arrest and amphiparatenesis: the Caenorhabditis elegans Daf-c paradigm. Parasitol Today. 1993;9:23–6.
Article
CAS
PubMed
Google Scholar
Moens M, Perry RN. Migratory plant endoparasitic nematodes: a group rich in contrasts and divergence. Annu Rev Phytopathol. 2009;47:313–32.
Article
CAS
PubMed
Google Scholar
Golden JW, Riddle DL. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science. 1982;218:578–80.
Article
CAS
PubMed
Google Scholar
Golden JW, Riddle DL. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. Dev Biol. 1984;102:368–78.
Article
CAS
PubMed
Google Scholar
Butcher RA, Fujita M, Schroeder FC, Clardy J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat Chem Biol. 2007;3:420–2.
Article
CAS
PubMed
Google Scholar
Butcher RA. Small-molecule pheromones and hormones controlling nematode development. Nat Chem Biol. 2017;13:577–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jeong PY, Jung M, Yim YH, Kim H, Park M, Hong E, et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature. 2005;433:541–5.
Article
CAS
PubMed
Google Scholar
Pungaliya C, Srinivasan J, Fox BW, Malik RU, Ludewig AH, Sternberg PW, et al. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. PNAS. 2009;106:7708–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
von Reuss SH, Bose N, Srinivasan J, Yim JJ, Judkins JC, Sternberg PW, et al. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J Am Chem Soc. 2012;134:1817–24.
Article
CAS
Google Scholar
Kim K, Sato K, Shibuya M, Zeiger DM, Butcher RA, Ragains JR, et al. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science. 2009;326:994–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGrath PT, Xu Y, Ailion M, Garrison JL, Butcher RA, Bargmann CI. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature. 2012;477:321–5.
Article
CAS
Google Scholar
Park D, O’Doherty I, Somvanshi RK, Bethke A, Schroeder FC, Kumar U, et al. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. PNAS. 2012;109:9917–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bargmann CI. Chemosensation in C. elegans. WormBook. Ed. the C. elegans Research Community; 2006.
Ludewig AH, Schroeder FC. Ascaroside signaling in C. elegans. Wormbook. Ed. the C. elegans Research Community. 2013.
Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH. A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics. 2000;155:85–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng S, Chiu H, Boudreau J, Papanicolaou T, Bendena W, Chin-Sang I. A functional study of all 40 Caenorhabditis elegans insulin-like peptides. J Biol Chem. 2018;293:16912–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paradis S, Ruvkun G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 1998;12:2488–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris JZ, Tissenbaum HA, Ruvkun G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature. 1996;382:536–9.
Article
CAS
PubMed
Google Scholar
Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G. A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev. 1999;13:1438–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96:857–68.
Article
CAS
PubMed
Google Scholar
Kaplan REW, Webster AK, Chitrakar R, Dent JA, Baugh LR. Food perception without ingestion leads to metabolic changes and irreversible developmental arrest in C. elegans. BMC Biol. 2018;16:1–16.
Article
CAS
Google Scholar
Tissenbaum HA, Hawdon J, Perregaux M, Hotez P, Guarente L, Ruvkun G. A common muscarinic pathway for diapause recovery in the distantly related nematode species Caenorhabditis elegans and Ancylostoma caninum. PNAS. 2000;97:460–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ailion M, Thomas JH. Dauer formation induced by high temperatures in Caenorhabditis elegans. Genetics. 2000;156:1047–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hobert O, Mori I, Yamashita Y, Honda H, Ohshima Y, Liu Y, et al. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron. 1997;19:345–57.
Article
CAS
PubMed
Google Scholar
Li C, Kim K. Neuropeptides. Wormbook. Ed. the C. elegans Research Community; 2008.
Lee JS, Shih PY, Schaedel ON, Quintero-Cadena P, Rogers AK, Sternberg PW. FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. PNAS. 2017;114:E10726–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCoy CJ, Atkinson LE, Zamanian M, McVeigh P, Day TA, Kimber MJ, et al. New insights into the FLPergic complements of parasitic nematodes: informing deorphanisation approaches. EuPA. 2014;3:262–72.
CAS
Google Scholar
Kubiak TM, Larsen MJ, Davis JP, Zantello MR, Bowman JW. AF2 interaction with Ascaris suum body wall muscle membranes involves G-protein activation. Biochem Biophys Res Commun. 2003;301:456–9.
Article
CAS
PubMed
Google Scholar
Ren P, Lim C-S, Johnsen R, Albert PS, Pilgrim D, Riddle DL. Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science. 1996;274:1389–91.
Article
CAS
PubMed
Google Scholar
Schackwitz WS, Inoue T, Thomas JH. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron. 1996;17:719–28.
Article
CAS
PubMed
Google Scholar
Georgi LL, Albert PS, Riddle DL. daf-1, a C. elegans gene controlling dauer larva development, encodes a novel receptor protein kinase. Cell. 1990;61:635–45.
Article
CAS
PubMed
Google Scholar
Estevez M, Attisano L, Wrana JL, Albert PS, Massagué J, Riddle DL. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nat Lett. 1993;363:644–9.
Article
Google Scholar
Savage-Dunn, C. TGF-β signaling. WormBook, Ed. The C. elegans Research Community; 2005.
Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev Cell. 2001;1:841–51.
Article
CAS
PubMed
Google Scholar
Li J, Brown G, Ailion M, Lee S, Thomas JH. NCR-1 and NCR-2, the C. elegans homologs of the human Niemann-Pick type C1 disease protein, function upstream of DAF-9 in the dauer formation pathways. Development. 2004;131:5741–52.
Article
CAS
PubMed
Google Scholar
Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, et al. Hormonal control of C. elegans dauer formation and life span by a Rieske-like oxygenase. Dev Cell. 2006;10:473–82.
Article
CAS
PubMed
Google Scholar
Wollam J, Magner DB, Magomedova L, Rass E, Shen Y, Rottiers V, et al. A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. PLoS Biol. 2012;10:19–21.
Article
CAS
Google Scholar
Jia K, Albert PS, Riddle DL. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development. 2002;129:221–31.
Article
CAS
PubMed
Google Scholar
Mahanti P, Bose N, Bethke A, Judkins JC, Wollam J, Dumas KJ, et al. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan. Cell Metab. 2014;19:73–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bethke A, Fielenbach N, Wang Z, Mangelsdorf DJ, Antebi A. Nuclear hormone receptor regulation of microRNAs controls developmental progression. Science. 2009;324:95–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ludewig AH, Kober-eisermann C, Weitzel C, Bethke A, Neubert K, Gerisch B, et al. A novel nuclear receptor/coregulator complex controls. Genes Dev. 2004;18:2120–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite—a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017;215:2–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li X, Massey HC, Nolan TJ, Schad GA, Kraus K, Sundaram M, et al. Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements. Int J Parasitol. 2006;36:671–9.
Article
CAS
PubMed
Google Scholar
Urwin PE, Lilley CJ, Atkinson HJ. Ingestion of double-stranded RNA by preparasitic larvae cyst nematodes leads to RNA interference. Mol Plant Microbe Interact. 2002;15:747–52.
Article
CAS
PubMed
Google Scholar
Ma G, Wang T, Korhonen PK, Nie S, Reid GE, Stroehlein AJ, et al. Comparative bioinformatic analysis suggests that specific dauer-like signalling pathway components regulate Toxocara canis development and migration in the mammalian host. Parasites Vectors. 2019;12:1–10.
Article
Google Scholar
Gomez-Escobar N, Gregory WF, Maizels RM. Identification of tgh-2, a filarial nematode homolog of Caenorhabditis elegans daf-7 and human transforming growth factor β, expressed in microfilarial and adult stages of Brugia malayi. Infect Immun. 2000;68:6402–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilabert A, Curran DM, Harvey SC, Wasmuth JD. Expanding the view on the evolution of the nematode dauer signalling pathways: refinement through gene gain and pathway co-option. BMC Genom. 2016;17:1–10.
Article
CAS
Google Scholar
Zhu XQ, Korhonen PK, Cai H, Young ND, Nejsum P, Von Samson-Himmelstjerna G, et al. Genetic blueprint of the zoonotic pathogen Toxocara canis. Nat Commun. 2015;6:6145.
Article
CAS
PubMed
Google Scholar
Long T, Alberich M, André F, Menez C, Prichard RK, Lespine A. The development of the dog heartworm is highly sensitive to sterols which activate the orthologue of the nuclear receptor DAF-12. Sci Rep. 2020;10:1–13.
Article
CAS
Google Scholar
Hawdon JM, Datu B. The second messenger cyclic GMP mediates activation in Ancylostoma caninum infective larvae. Int J Parasitol. 2003;33:787–93.
Article
CAS
PubMed
Google Scholar
Datu BJD, Loukas A, Cantacessi C, O’Donoghue P, Gasser RB. Investigation of the regulation of transcriptional changes in Ancylostoma caninum larvae following serum activation, with a focus on the insulin-like signalling pathway. Vet Parasitol. 2009;159:139–48.
Article
CAS
PubMed
Google Scholar
Huang SCC, Chan DTY, Smyth DJ, Ball G, Gounaris K, Selkirk ME. Activation of Nippostrongylus brasiliensis infective larvae is regulated by a pathway distinct from the hookworm Ancylostoma caninum. Int J Parasitol. 2010;40:1619–28.
Article
CAS
PubMed
Google Scholar
Mohandas N, Hu M, Stroehlein AJ, Young ND, Sternberg PW, Lok JB, et al. Reconstruction of the insulin-like signalling pathway of Haemonchus contortus. Parasites Vectors. 2016;9:1–10.
Article
CAS
Google Scholar
Brand A, Hawdon JM. Phosphoinositide-3-OH-kinase inhibitor LY294002 prevents activation of Ancylostoma caninum and Ancylostoma ceylanicum third-stage infective larvae. Int J Parasitol. 2004;34:909–14.
Article
CAS
PubMed
Google Scholar
Li FC, Gasser RB, Lok JB, Korhonen PK, Wang YF, Yin FY, et al. Exploring the role of two interacting phosphoinositide 3-kinases of Haemonchus contortus. Parasites Vectors. 2014;7:1–12.
Article
CAS
Google Scholar
Li FC, Gasser RB, Lok JB, Korhonen PK, He L, Da DW, et al. Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasites Vectors. 2016;9:1–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Di W, Gasser RB, Zhou C, Zhou Y. A serine/threonine-specific protein kinase of Haemonchus contortus with a role in the development. FASEB. 2019;00:1–12.
Google Scholar
Yan B, Sun W, Yan L, Zhang L, Zheng Y, Zeng Y, et al. Structural and functional characterisation of FOXO/Acan-DAF-16 from the parasitic nematode Angiostrongylus cantonensis. Acta Trop. 2016;164:125–36.
Article
PubMed
Google Scholar
Brand AM, Varghese G, Majewski W, Hawdon JM. Identification of a DAF-7 ortholog from the hookworm Ancylostoma caninum. Int J Parasitol. 2005;35:1489–98.
Article
CAS
PubMed
Google Scholar
Freitas TC, Arasu P. Cloning and characterisation of genes encoding two transforming growth factor-β-like ligands from the hookworm, Ancylostoma caninum. Int J Parasitol. 2005;35:1477–87.
Article
CAS
PubMed
Google Scholar
McSorley HJ, Grainger JR, Harcus Y, Murray J, Nisbet AJ, Knox DP, et al. daf-7-related TGF-β homologues from Trichostrongyloid nematodes show contrasting life-cycle expression patterns. Parasitology. 2010;137:159–71.
Article
CAS
PubMed
Google Scholar
Ayoade KO, Carranza FR, Cho WH, Wang Z, Kliewer SA, Mangelsdorf DJ, et al. Dafachronic acid and temperature regulate canonical dauer pathways during Nippostrongylus brasiliensis infectious larvae activation. Parasites Vectors. 2020;13:1–15.
Article
CAS
Google Scholar
Di W, Liu L, Zhang T, Li F, He L, Wang C, et al. A DAF-3 co-Smad molecule functions in Haemonchus contortus development. Parasites Vectors. 2019;12:609.
Article
CAS
PubMed
PubMed Central
Google Scholar
He L, Gasser RB, Li T, Di W, Li F, Zhang H, et al. A TGF-β type II receptor that associates with developmental transition in Haemonchus contortus in vitro. PLoS Negl Trop Dis. 2019;13:1–18.
Google Scholar
Lok JB. Signaling in parasitic nematodes: physicochemical communication between host and parasite and endogenous molecular transduction pathways governing worm development and survival. Curr Clin Microbiol Rep. 2016;3:186–97.
Article
PubMed
PubMed Central
Google Scholar
Wang Z, Zhou XE, Motola DL, Gao X, Suino-Powell K, Conneely A, et al. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. PNAS. 2009;106:9138–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhi X, Zhou XE, Melcher K, Motola DL, Gelmedin V, Hawdon J, et al. Structural conservation of ligand binding reveals a bile acid-like signaling pathway in nematodes. J Biol Chem. 2012;287:4894–903.
Article
CAS
PubMed
Google Scholar
Ma G, Wang T, Korhonen PK, Young ND, Nie S, Ang CS, et al. Dafachronic acid promotes larval development in Haemonchus contortus by modulating dauer signalling and lipid metabolism. PLoS Pathog. 2019;15:1–20.
CAS
Google Scholar
Hawdon JT, Schad GA. Serum-stimulated feeding in vitro by third-stage infective larvae of the canine hookworm Ancylostoma caninum. J Parasitol. 1990;76:394–8.
Article
CAS
PubMed
Google Scholar
Stasiuk SJ, Scott MJ, Grant WN. Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri. EvoDevo. 2012;3:1–14.
Article
PubMed
PubMed Central
Google Scholar
Zhao L, Zhang S, Wei W, Hao H, Zhang B, Butcher RA, et al. Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle. Curr Biol. 2013;23:2038–43.
Article
CAS
PubMed
Google Scholar
Zhang W, Li Y, Pan L, Wang X, Feng Y, Zhang X. Pine chemical volatiles promote dauer recovery of a pine parasitic nematode, Bursaphelenchus xylophilus. Parasitology. 2019;147:1–8.
CAS
Google Scholar
Wu Y, Wickham JD, Zhao L, Sun J. CO2 drives the pine wood nematode off its insect vector. Curr Biol. 2019;29:R619–20.
Article
CAS
PubMed
Google Scholar
Tanaka SE, Aikawa T, Takeuchi-Kaneko Y, Fukuda K, Kanzaki N. Artificial induction of third-stage dispersal juveniles of Bursaphelenchus xylophilus using newly established inbred lines. PLoS ONE. 2017;12:1–16.
CAS
Google Scholar
Stoltzfus JD, Bart SM, Lok JB. cGMP and NHR signaling co-regulate expression of insulin-like peptides and developmental activation of infective larvae in Strongyloides stercoralis. PLoS Pathog. 2014;10(7):e1004235.
Article
PubMed
PubMed Central
CAS
Google Scholar
Massey HC, Ball CC, Lok JB. PCR amplification of putative gpa-2 and gpa-3 orthologs from the (A+T)-rich genome of Strongyloides stercoralis. Int J Parasitol. 2001;31:377–83.
Article
CAS
PubMed
Google Scholar
Bryant AS, Ruiz F, Gang SS, Castelletto ML, Lopez JB, Hallem EA. A critical role for thermosensation in host seeking by skin-penetrating nematodes. Curr Biol. 2018;28:2338–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoltzfus JD, Massey HC, Nolan TJ, Griffith SD, Lok JB. Strongyloides stercoralis age-1: a potential regulator of infective larval development in a parasitic nematode. PLoS ONE. 2012;7:1–11.
Article
CAS
Google Scholar
Tanaka SE, Dayi M, Maeda Y, Tsai IJ, Tanaka R, Bligh M, et al. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle. Sci Rep. 2019;9:1–13.
Google Scholar
Massey HC, Bhopale MK, Li X, Castelletto M, Lok JB. The fork head transcription factor FKTF-1b from Strongyloides stercoralis restores DAF-16 developmental function to mutant Caenorhabditis elegans. Int J Parasitol. 2006;36:347–52.
Article
CAS
PubMed
Google Scholar
Crook M, Thompson FJ, Grant WN, Viney ME. daf-7 and the development of Strongyloides ratti and Parastrongyloides trichosuri. Mol Biochem Parasitol. 2005;139:213–23.
Article
CAS
PubMed
Google Scholar
Massey HC, Castelletto ML, Bhopale VM, Schad GA, Lok JB. Sst-tgh-1 from Strongyloides stercoralis encodes a proposed ortholog of daf-7 in Caenorhabditis elegans. Mol Biochem Parasitol. 2005;142:116–20.
Article
CAS
PubMed
Google Scholar
Albarqi MMY, Stoltzfus JD, Pilgrim AA, Nolan TJ, Wang Z, Kliewer SA, et al. Regulation of life cycle checkpoints and developmental activation of infective larvae in Strongyloides stercoralis by dafachronic acid. PLoS Pathog. 2016;12:1–20.
Article
CAS
Google Scholar
Wang DD, Cheng XY, Wang YS, Pan HY, Xie BY. Characterization and expression of daf-9 and daf-12 genes in the pinewood nematode, Bursaphelenchus xylophilus. For Pathol. 2013;43:144–52.
Article
Google Scholar
Ogawa A, Streit A, Antebi A, Sommer RJ. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr Biol. 2009;19:67–71.
Article
CAS
PubMed
Google Scholar
Dulovic A, Streit A. RNAi-mediated knockdown of daf-12 in the model parasitic nematode Strongyloides ratti. PLoS Pathog. 2019;15:1–25.
Article
CAS
Google Scholar
Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol. 2013;14:946–61.
Article
PubMed
PubMed Central
Google Scholar
Rogers WP, Sommerville RI. The infective stage of nematode parasites and its significance in parasitism. Adv Parasitol. 1963;1:109–77.
Article
CAS
PubMed
Google Scholar
Tarjan AC. Longevity of Radopholus similis (Cobb) in host-free soil. Nematologica. 1961;6:170–5.
Article
Google Scholar
Bird AF, Buttrose MS. Ultrastructural changes in the nematode Anguina tritici associated with anhydrobiosis. J Ultrasructure Res. 1974;48:177–89.
Article
CAS
Google Scholar
Hunt DJ, Luc M, Manzanilla-López RH. Plant parasitic nematodes in subtropical and tropical agriculture. In: Luc M, Sikora RA, Bridge J, editors. Identification, morphology and biology of plant parasitic nematodes. 2nd ed. Wallingford: CABI publishing; 2005. p. 11–52.
Google Scholar
Yang D, Chen C, Liu Q, Jian H. Comparative analysis of pre- and post-parasitic transcriptomes and mining pioneer effectors of Heterodera avenae. Cell Biosci. 2017;7:1–18.
Article
CAS
Google Scholar
Proudfoot L, Kusel JR, Smith HV, Harnett W, Worms MJ, Kennedy MW. Rapid changes in the surface of parasitic nematodes during transition from pre- to post-parasitic forms. Parasitology. 1993;107:107–17.
Article
PubMed
Google Scholar
Akhkha A, Kusel J, Kennedy M, Curtis R. Effects of phytohormones on the surfaces of plant-parasitic nematodes. Parasitology. 2002;125:165–75.
Article
CAS
PubMed
Google Scholar
McCarter JP, Mitreva MD, Martin J, Dante M, Wylie T, Rao U, et al. Analysis and functional classification of transcripts from the nematode Meloidogyne incognita. Genome Biol. 2003;4:1–19.
Article
Google Scholar
Popeijus H, Blok VC, Cardle L, Bakker E, Phillips MS, Helder J, et al. Analysis of genes expressed in second stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida using the expressed sequence tag approach. Nematology. 2000;2:567–74.
Article
CAS
Google Scholar
Lu C-J, Tian B-Y, Cao Y, Zou C-G, Zhang K-Q. Nuclear receptor nhr-48 is required for pathogenicity of the second stage (J2) of the plant parasite Meloidogyne incognita. Sci Rep. 2016;6:1–12.
Article
CAS
Google Scholar
Schroeder NE, MacGuidwin AE. Behavioural quiescence reduces the penetration and toxicity of exogenous compounds in second-stage juveniles of Heterodera glycines. Nematology. 2010;12:277–87.
Article
CAS
Google Scholar
Sikder MM, Vestergård M. Impacts of root metabolites on soil nematodes. Front Plant Sci. 2020;10:1–18.
Article
Google Scholar
Perry RN, Clarke AJ. Hatching mechanisms of nematodes. Parasitology. 1981;83:435–49.
Article
Google Scholar
Masamune T, Anetai M, Takasugi M, Katsui N. Isolation of a natural hatching stimulus, glycinoeclepin A, for the soybean cyst nematode. Nature. 1982;297:495–6.
Article
CAS
Google Scholar
Schenk H, Driessen RAJ, De Gelder R. Elucidation of the structure of solanoeclepin A, a natural hatching factor of potato and tomato cyst nematodes, by single-crystal X-ray diffraction. Croat Chem Acta. 1999;72:593–606.
CAS
Google Scholar
Sakata I, Kushida A, Tanino K. The hatching-stimulation activity of solanoeclepin A toward the eggs of Globodera (Tylenchida: Heteroderidae) species. Appl Entomol Zool. 2020;56(1):51–7.
Article
CAS
Google Scholar
Huang X, Xu CL, Yang SH, Li JY, Le WH, Zhang ZX, et al. Life-stage specific transcriptomes of a migratory endoparasitic plant nematode, Radopholus similis elucidate a different parasitic and life strategy of plant parasitic nematodes. Sci Rep. 2019;9:1–11.
Google Scholar
Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, et al. Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. PNAS. 2008;105:14802–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shivakumara TN, Dutta TK, Chaudhary S, Von Reuss SH, Williamson VM, Rao U. Homologs of Caenorhabditis elegans chemosensory genes have roles in behavior and chemotaxis in the root-knot nematode Meloidogyne incognita. Mol Plant Microbe Interact. 2019;31:876–87.
Article
Google Scholar
Laloum Y, Ngala B, Ianszen M, Boulogne I, Plasson C, Fournet S, et al. A novel in vitro tool to study cyst nematode chemotaxis. Front Plant Sci. 2020;11:1–7.
Article
Google Scholar
Kimber MJ, McKinney S, McMaster S, Day TA, Fleming CC, Maule AG. flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB. 2007;21:1233–43.
Article
CAS
Google Scholar
Dong L, Li X, Huang C, Lu Q, Li B, Yao Y, et al. Reduced Meloidogyne incognita infection of tomato in the presence of castor and the involvement of fatty acids. Sci Hortic. 2018;237:169–75.
Article
CAS
Google Scholar
Dong L, Li X, Huang L, Gao Y, Zhong L, Zheng Y, et al. Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection. J Exp Bot. 2014;65:131–41.
Article
CAS
PubMed
Google Scholar
Kumari C, Dutta TK, Chaudhary S, Banakar P, Papolu PK, Rao U. Molecular characterization of FMRFamide-like peptides in Meloidogyne graminicola and analysis of their knockdown effect on nematode infectivity. Gene. 2017;619:50–60.
Article
CAS
PubMed
Google Scholar
Cox DE, Dyer S, Weir R, Cheseto X, Sturrock M, Coyne D, et al. ABC transporter genes ABC-C6 and ABC-G33 alter plant-microbe-parasite interactions in the rhizosphere. Sci Rep. 2019;9:1–13.
Google Scholar
Basso MF, Lourenço-tessutti IT, Mendes RAG, Moreira Pinto CE, Bournaud C, Gillet F-X, et al. MiDaf16-like and MiSkn1-like gene families are reliable targets to develop biotechnological tools for the control and management of Meloidogyne incognita. Sci Rep. 2020;10:1–13.
Article
CAS
Google Scholar
Gillet F-X, Bournaud C, Antonino de Souza Júnior JD, Grossi-de-Sa MF. Plant-parasitic nematodes: towards understanding molecular players in stress responses. Ann Bot. 2017;119:775–89.
CAS
PubMed
PubMed Central
Google Scholar
Palomares-Rius JE, Jones JT, Cock PJ, Castillo P, Blok VC. Activation of hatching in diapaused and quiescent Globodera pallida. Parasitology. 2013;140:445–54.
Article
CAS
PubMed
Google Scholar
Elling AA, Mitreva M, Recknor J, Gai X, Martin J, Maier TR, et al. Divergent evolution of arrested development in the dauer stage of Caenorhabditis elegans and the infective stage of Heterodera glycines. Genome Biol. 2007;8:1–19.
Article
CAS
Google Scholar
Bird DM, Jones JT, Opperman CH, Kikuchi T, Danchin TGJ. Signatures of adaptation to plant parasitism in nematode genomes. Parasitology. 2015;142:S71–84.
Article
CAS
PubMed
Google Scholar
Sargison ND, Wilson DJ, Bartley DJ, Penny CD, Jackson F. Haemonchosis and teladorsagiosis in a Scottish sheep flock putatively associated with the overwintering of hypobiotic fourth stage larvae. Vet Parasitol. 2007;147:326–31.
Article
CAS
PubMed
Google Scholar
Palomares-Rius JE, Hedley P, Cock PJA, Morris JA, Jones JT, Blok VC. Gene expression changes in diapause or quiescent potato cyst nematode, Globodera pallida, eggs after hydration or exposure to tomato root diffusate. PeerJ. 2016;4:1–23.
Article
CAS
Google Scholar
Ma G, Wang T, Korhonen PK, Hofmann A, Sternberg PW, Young ND, et al. Elucidating the molecular and developmental biology of parasitic nematodes: moving to a multiomics paradigm. Adv Parasitol. 2020;108:175–229.
Article
PubMed
Google Scholar
Wang Z. Nuclear receptor controls nematode metabolism and development: insight into man’s nemesis, the conqueror worm (Doctoral dissertation). University of Texas Southwestern Medical Center, Dallas, USA. 2010.
Byrne JT, Maher NJ, Jones PW. Comparative responses of Globodera rostochiensis and G. pallida to hatching chemicals. J Nematol. 2001;33:195–202.
CAS
PubMed
PubMed Central
Google Scholar
Ma G, Wang T, Korhonen PK, Stroehlein AJ, Young ND, Gasser RB. Dauer signalling pathway model for Haemonchus contortus. Parasites Vectors. 2019;12:1–11.
Article
Google Scholar