Gubler DJ. The global threat of emergent/re-emergent vector-borne diseases. In: Atkinson PW, editor. Vector biology, ecology and control. Dordrecht: Springer Netherlands; 2010. p. 39–62.
Chapter
Google Scholar
Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog. 2013;9:e1003467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dick GWA, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–20.
Article
CAS
PubMed
Google Scholar
Delatorre E, Fernández J, Bello G. Investigating the role of Easter Island in migration of Zika virus from South Pacific to Americas. Emerg Infect Dis. 2018;24:2119–21.
Article
PubMed
PubMed Central
Google Scholar
Krauer F, Riesen M, Reveiz L, Oladapo OT, Martínez-Vega R, Porgo TV, et al. Zika virus infection as a cause of congenital brain abnormalities and Guillain-Barré syndrome: systematic review. PLoS Med. 2017;14:e1002203.
Article
PubMed
PubMed Central
Google Scholar
Murray NEA, Quam MB, Wilder-Smith A. Epidemiology of dengue: past, present and future prospects. Clin Epidemiol. 2013;5:299–309.
PubMed
PubMed Central
Google Scholar
Yactayo S, Staples JE, Millot V, Cibrelus L, Ramon-Pardo P. Epidemiology of Chikungunya in the Americas. J Infect Dis. 2016;214:S441–5.
Article
PubMed
PubMed Central
Google Scholar
Powell JR, Tabachnick WJ, Powell JR, Tabachnick WJ. History of domestication and spread of Aedes aegypti—a review. Mem Inst Oswaldo Cruz. 2013;108:11–7.
Article
PubMed
PubMed Central
Google Scholar
Enserink M. A mosquito goes global. Science. 2008;320:864–6.
Article
CAS
PubMed
Google Scholar
Wagman J, Grieco JP, King R, Briceño I, Bautista K, Polanco J, et al. First record and demonstration of a southward expansion of Aedes albopictus into Orange Walk Town, Belize, Central America. J Am Mosq Control Assoc. 2013;29:380–2.
Article
PubMed
Google Scholar
Kraemer MUG, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4:854–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller MJ, Loaiza JR. Geographic expansion of the invasive mosquito Aedes albopictus across Panama—implications for control of dengue and Chikungunya viruses. PLoS Negl Trop Dis. 2015;9:e0003383.
Article
PubMed
PubMed Central
CAS
Google Scholar
Muñoz ÁG, Thomson MC, Goddard LM, Aldighieri S. The Latin American and Caribbean climate landscape for ZIKV transmission. 2016. https://academiccommons.columbia.edu/doi/10.7916/D8X34XHV. Accessed 26 Aug 2021.
Lega J, Brown HE, Barrera R. Aedes aegypti (Diptera: Culicidae) abundance model improved with relative humidity and precipitation-driven egg hatching. J Med Entomol. 2017;54:1375–84.
Article
PubMed
PubMed Central
Google Scholar
Jones R, Kulkarni MA, Davidson TMV, RADAM-LAC Research Team, Talbot B. Arbovirus vectors of epidemiological concern in the Americas: a scoping review of entomological studies on Zika, dengue and chikungunya virus vectors. PLoS ONE 2020;15:e0220753.
Elmqvist T, Fragkias M, Goodness J, Güneralp B, Marcotullio PJ, McDonald RI, et al. Urbanization, biodiversity and ecosystem services: challenges and opportunities. Dordrecht: Springer Netherlands; 2013.
Li Y, Kamara F, Zhou G, Puthiyakunnon S, Li C, Liu Y, et al. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis. 2014;8:e3301.
Article
PubMed
PubMed Central
Google Scholar
Kjellstrom T, Friel S, Dixon J, Corvalan C, Rehfuess E, Campbell-Lendrum D, et al. Urban environmental health hazards and health equity. J Urban Health. 2007;84:86–97.
Article
PubMed Central
Google Scholar
Eisenstein M. Disease: poverty and pathogens. Nature. 2016;531:S61–3.
Article
CAS
PubMed
Google Scholar
Murray M, Edwards MA, Abercrombie B, St. Clair CC. Poor health is associated with use of anthropogenic resources in an urban carnivore. Proc R Soc B. 2015;282:20150009.
Article
PubMed
PubMed Central
Google Scholar
Galea S. Urban built environment and depression: a multilevel analysis. J Epidemiol Community Health. 2005;59:822–7.
Article
PubMed
PubMed Central
Google Scholar
Donnelly MAP, Kluh S, Snyder RE, Barker CM. Quantifying sociodemographic heterogeneities in the distribution of Aedes aegypti among California households. PLoS Negl Trop Dis. 2020;14:e0008408.
Article
PubMed
PubMed Central
Google Scholar
Whiteman A, Loaiza JR, Yee DA, Poh KC, Watkins AS, Lucas KJ, et al. Do socioeconomic factors drive Aedes mosquito vectors and their arboviral diseases? a systematic review of dengue, chikungunya, yellow fever, and Zika Virus. One Health. 2020;11:100188.
Article
PubMed
PubMed Central
Google Scholar
Barrera R, Navarro JC, Mora JD, Domínguez D, González J. Public service deficiencies and Aedes aegypti breeding sites in Venezuela. Bull Pan Am Health Organ. 1995;29:193–205.
CAS
PubMed
Google Scholar
Fuentes-Vallejo M, Higuera-Mendieta DR, García-Betancourt T, Alcalá-Espinosa LA, García-Sánchez D, Munévar-Cagigas DA, et al. Territorial analysis of Aedes aegypti distribution in two Colombian cities: a chorematic and ecosystem approach. Cad Saude Publica. 2015;31:517–30.
Article
PubMed
Google Scholar
Whiteman A, Gomez C, Rovira J, Chen G, McMillan WO, Loaiza J. Aedes mosquito infestation in socioeconomically contrasting neighborhoods of Panama City. EcoHealth. 2019;16:210–21.
Article
PubMed
Google Scholar
Dowling Z, Armbruster P, LaDeau SL, DeCotiis M, Mottley J, Leisnham PT. Linking mosquito infestation to resident socioeconomic status, knowledge, and source reduction practices in suburban Washington, DC. EcoHealth. 2013;10:36–47.
Article
PubMed
Google Scholar
Little E, Biehler D, Leisnham PT, Jordan R, Wilson S, LaDeau SL. Socio-ecological mechanisms supporting high densities of Aedes albopictus (Diptera: Culicidae) in Baltimore, MD. J Med Entomol. 2017;54:1183–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Costa EAPA, de Santos EMM, Correia JC, de Albuquerque CMR. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev Bras Entomol. 2010;54:488–93.
Article
Google Scholar
da Cruz Ferreira DA, Degener CM, de Almeida M-T, Bendati MM, Fetzer LO, Teixeira CP, et al. Meteorological variables and mosquito monitoring are good predictors for infestation trends of Aedes aegypti, the vector of dengue, chikungunya and Zika. Parasit Vectors. 2017;10:78.
Article
PubMed
PubMed Central
Google Scholar
Codeço CT, Honório NA, Ríos-Velásquez CM, Santos MDCAD, de Mattos V, Luz SB, et al. Seasonal dynamics of Aedes aegypti (Diptera: Culicidae) in the northernmost state of Brazil: a likely port-of-entry for dengue virus 4. Mem Inst Oswaldo Cruz. 2009;104:614–20.
Article
PubMed
Google Scholar
Carbajo AE, Vezzani D. Waiting for chikungunya fever in Argentina: spatio-temporal risk maps. Mem Inst Oswaldo Cruz. 2015;110:259–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harbach RE, Knight KL. Taxonomists’ glossary of mosquito anatomy. Marton: Plexus; 1980.
Google Scholar
Carrasquilla MC, Ortiz MI, León C, Rondón S, Kulkarni MA, Talbot B, et al. Entomological characterization of Aedes mosquitoes and arbovirus detection in Ibagué, a Colombian city with co-circulation of Zika, dengue and chikungunya viruses. Parasit Vectors. 2021;14:446. https://doi.org/10.1186/s13071-021-04908-x.
Article
PubMed
PubMed Central
Google Scholar
Vyas S, Kumaranayake L. Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan. 2006;21:459–68.
Article
PubMed
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Soft. 2015. https://doi.org/10.18637/jss.v067.i01.
Article
Google Scholar
Chambers JM, Hastie T. Statistical models in S. Pacific Grove: Wadsworth & Brooks/Cole Advanced Books & Software; 1992.
Google Scholar
Fox J, Weisberg S. An R companion to applied regression. 2nd ed. Thousand Oaks: SAGE Publishing; 2011.
Google Scholar
Raftery AE. Bayesian model selection in social research. Sociol Methodol. 1995;25:111.
Article
Google Scholar
Barton K. MuMIn: multi-model inference. In: The comprehensive R archive network. Krakow: Institute of Nature Conservation. 2013. http://cran.r-project.org/web/packages/MuMIn/index.html. Accessed 26 Aug 2021.
Perkins NJ, Cole SR, Harel O, Tchetgen Tchetgen EJ, Sun B, et al. Principled approaches to missing data in epidemiologic studies. Am J Epidemiol. 2018;187:568–75.
Article
PubMed
Google Scholar
Samson DM, Archer RS, Alimi TO, Arheart KL, Impoinvil DE, Oscar R, et al. New baseline environmental assessment of mosquito ecology in northern Haiti during increased urbanization. J Vector Ecol. 2015;40:46–58.
Article
PubMed
PubMed Central
Google Scholar
Ruiz MO, Tedesco C, McTighe TJ, Austin C, Kitron U. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. Int J Health Geogr. 2004;3:8.
Article
PubMed
PubMed Central
Google Scholar
Kudom AA, Mensah BA. The potential role of the educational system in addressing the effect of inadequate knowledge of mosquitoes on use of insecticide-treated nets in Ghana. Malar J. 2010;9:256.
Article
PubMed
PubMed Central
Google Scholar
Healy K, Hamilton G, Crepeau T, Healy S, Unlu I, Farajollahi A, et al. Integrating the public in mosquito management: active education by community peers can lead to significant reduction in peridomestic container mosquito habitats. PLoS ONE. 2014;9:e108504.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nasir S, Jabeen F, Abbas S, Nasir I, Debboun M. Effect of climatic conditions and water bodies on population dynamics of the dengue vector, Aedes aegypti (Diptera: Culicidae). J Arthropod Borne Dis. 2017;11:50–9.
PubMed
PubMed Central
Google Scholar
Forsyth JE, Mutuku FM, Kibe L, Mwashee L, Bongo J, Egemba C, et al. Source reduction with a purpose: mosquito ecology and community perspectives offer insights for improving household mosquito management in coastal Kenya. PLoS Negl Trop Dis. 2020;14:e0008239.
Article
PubMed
PubMed Central
Google Scholar
Vannavong N, Seidu R, Stenström T-A, Dada N, Overgaard HJ. Effects of socio-demographic characteristics and household water management on Aedes aegypti production in suburban and rural villages in Laos and Thailand. Parasit Vectors. 2017;10:170.
Article
PubMed
PubMed Central
Google Scholar
Overgaard HJ, Olano VA, Jaramillo JF, Matiz MI, Sarmiento D, Stenström TA, et al. A cross-sectional survey of Aedes aegypti immature abundance in urban and rural household containers in central Colombia. Parasit Vectors. 2017;10:356.
Article
PubMed
PubMed Central
Google Scholar
Cordeiro R, Donalisio MR, Andrade VR, Mafra AC, Nucci LB, Brown JC, et al. Spatial distribution of the risk of dengue fever in southeast Brazil, 2006–2007. BMC Public Health. 2011;11:355.
Article
PubMed
PubMed Central
Google Scholar
LaDeau S, Leisnham P, Biehler D, Bodner D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int J Environ Res Public Health. 2013;10:1505–26.
Article
PubMed
PubMed Central
Google Scholar