Keesing F, Young TP. Cascading consequences of the loss of large mammals in an African savanna. Bioscience. 2014;64(6):487–95.
Article
Google Scholar
Hoyer IJ, Blosser EM, Acevedo C, Thompson AC, Reeves LE, Burkett-Cadena ND. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease. Biol Lett. 2017;13(10):20170353.
Article
PubMed
PubMed Central
Google Scholar
Levi T, Kilpatrick AM, Mangel M, Wilmers CC. Deer, predators, and the emergence of Lyme disease. Proc Natl Acad Sci. 2012;109(27):10942–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gassner F, Verbaarschot P, Smallegange RC, Spitzen J, Van Wieren SE, Takken W. Variations in Ixodes ricinus density and Borrelia infections associated with cattle introduced into a woodland in the Netherlands. Appl Environ Microbiol. 2008;74(23):7138–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sprong H, Moonen S, van Wieren SE, Hofmeester TR. Effects of cattle grazing on Ixodes ricinus-borne disease risk in forest areas of the Netherlands. Ticks Tick Borne Dis. 2020;11(2):101355.
Article
PubMed
Google Scholar
Buesching CD, Newman C, Jones JT, Macdonald DW. Testing the effects of deer grazing on two woodland rodents, bank voles and wood mice. Basic Appl Ecol. 2011;12(3):207–14.
Article
Google Scholar
Flowerdew JR, Ellwood SA. Impacts of woodland deer on small mammal ecology. Forestry. 2001;74(3):277–87.
Article
Google Scholar
van Wieren SE, Bakker JP. The impact of browsing and grazing herbivores on biodiversity. In: Gordon IJ, Prins HHT, editors. The ecology of browsing and grazing. Springer: Netherlands; 2008. p. 263–92.
Chapter
Google Scholar
Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet. 2012;379(9814):461–73.
Article
PubMed
Google Scholar
Hofmeester TR, Coipan EC, van Wieren SE, Prins HHT, Takken W, Sprong H. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle. Environ Res Lett. 2016;11(4):043001.
Article
Google Scholar
Hanincová K, Schäfer SM, Etti S, Sewell HS, Taragelová V, Ziak D, et al. Association of Borrelia afzelii with rodents in Europe. Parasitology. 2003;2003(126):11–20.
Article
Google Scholar
Heylen D, Matthysen E, Fonville M, Sprong H. Songbirds as general transmitters but selective amplifiers of Borrelia burgdorferi sensu lato genotypes in Ixodes rinicus ticks. Environ Microbiol. 2014;16(9):2859–68.
Article
PubMed
Google Scholar
Daniels TJ, Fish D. Effect of deer exclusion on the abundance of immature Ixodes scapularis (Acari: Ixodidae) parasitizing small and medium-sized mammals. J Med Entomol. 1995;32(1):5–11.
Article
CAS
PubMed
Google Scholar
Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli AP, Hudson PJ. Localized deer absence leads to tick amplification. Ecology. 2006;87(8):1981–6.
Article
PubMed
Google Scholar
Bolzoni L, Rosà R, Cagnacci F, Rizzoli A. Effect of deer density on tick infestation of rodents and the hazard of tick-borne encephalitis. II. Population and infection models. Int J Parasitol. 2012;42(4):373–81.
Article
CAS
PubMed
Google Scholar
Pacilly FCA, Benning ME, Jacobs F, Leidekker J, Sprong H, Van Wieren SE, et al. Blood feeding on large grazers affects the transmission of Borrelia burgdorferi sensu lato by Ixodes ricinus. Ticks Tick Borne Dis. 2014;5(6):810–7.
Article
CAS
PubMed
Google Scholar
Gilbert L, Maffey GL, Ramsay SL, Hester AJ. The effect of deer management on the abundance of Ixodes ricinus in Scotland. Ecol Appl. 2012;22(2):658–67.
Article
CAS
PubMed
Google Scholar
Mysterud A, Easterday WR, Stigum VM, Aas AB, Meisingset EL, Viljugrein H. Contrasting emergence of Lyme disease across ecosystems. Nat Commun. 2016;7(6630):11882.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniels TJ, Fish D, Schwartz I. Reduced abundance of Ixodes scapularis (Acari: Ixodidae) and Lyme disease risk by deer exclusion. J Med Entomol. 1993;30(6):1043–9.
Article
CAS
PubMed
Google Scholar
Gray JS, Kahl O, Janetzki C, Stein J. Studies on the ecology of Lyme disease in a deer forest in County Galway, Ireland. J Med Entomol. 1992;29(6):915–20.
Article
CAS
PubMed
Google Scholar
Norman R, Bowers RG, Begon M, Hudson PJ. Persistence of tick-borne virus in the presence of multiple host species: tick reservoirs and parasite mediated competition. J Theor Biol. 1999;200(1):111–8.
Article
CAS
PubMed
Google Scholar
Ostfeld RS, Keesing F. Biodiversity and disease risk: the case of Lyme disease. Conserv Biol. 2000;14(3):722–8.
Article
Google Scholar
Allombert S, Gaston AJ, Martin JL. A natural experiment on the impact of overabundant deer on songbird populations. Biol Conserv. 2005;126(1):1–13.
Article
Google Scholar
Vourc’h G, Abrial D, Bord S, Jacquot M, Masséglia S, Poux V, et al. Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France. Ticks Tick Borne Dis. 2016;7:644–52.
Article
PubMed
Google Scholar
Takumi K, Sprong H, Hofmeester TR. Impact of vertebrate communities on Ixodes ricinus-borne disease risk in forest areas. Parasit Vectors. 2019;12(1):1–12.
Article
Google Scholar
Jones EO, Webb SD, Ruiz-Fons FJ, Albon S, Gilbert L. The effect of landscape heterogeneity and host movement on a tick-borne pathogen. Theor Ecol. 2011;4(4):435–48.
Article
Google Scholar
James MC, Gilbert L, Bowman AS, Forbes KJ. The heterogeneity, distribution, and environmental associations of Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in Scotland. Front Public Health. 2014;2(August):129.
PubMed
PubMed Central
Google Scholar
Saïd S, Servanty S. The influence of landscape structure on female roe deer home-range size. Landsc Ecol. 2005;20(8):1003–12.
Article
Google Scholar
Millins C, Leo W, MacInnes I, Ferguson J, Charlesworth G, Nayar D, et al. Emergence of Lyme disease on treeless islands, Scotland, United Kingdom. Emerg Infect Dis. 2021;27(2):538–46.
Article
PubMed
PubMed Central
Google Scholar
van Wieren SE, Braks MAH, Lahr J. Effectiveness and environmental hazards of acaricides applied to large mammals for tick control. In: Braks MAH, van Wieren SE, Takken W, Sprong H, editors. Ecology and prevention of Lyme borreliosis. Wageningen: Academic Publisher; 2016. p. 265–78.
Chapter
Google Scholar
Davey RB, Pound JM, Miller JA, Klavons JA. Therapeutic and persistent efficacy of a long-acting (LA) formulation of ivermectin against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and sera concentration through time in treated cattle. Vet Parasitol. 2010;169(1–2):149–56.
Article
CAS
PubMed
Google Scholar
Falco RC, Fish D. A comparison of methods for sampling the deer tick, Ixodes dammini, in a Lyme disease endemic area. Exp Appl Acarol. 1992;14(2):165–73.
Article
CAS
PubMed
Google Scholar
Gigon F. Biologie d’Ixodes ricinus sur le Plateau Suisse—une contribution a l’ecologie de ce vecteur. Universite de Neuchatel; 1985.
Gilbert L. Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia. 2010;162(1):217–25.
Article
PubMed
Google Scholar
Gern L, Douet V, López Z, Rais O, Cadenas FM. Diversity of Borrelia genospecies in Ixodes ricinus ticks in a Lyme borreliosis endemic area in Switzerland identified by using new probes for reverse line blotting. Ticks Tick Borne Dis. 2010;1(1):23–9.
Article
PubMed
Google Scholar
Rijpkema SG, Molkenboer MJ, Schouls LM, Jongejan F, Schellekens JF. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol. 1995;33(12):3091–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heylen D, Tijsse E, Fonville M, Matthysen E, Sprong H. Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environ Microbiol. 2013;15(2):663–73.
Article
PubMed
Google Scholar
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology with R. Gail M, Krickeberg K, Samet JM, Tsiatis A, Wong W, editors. Amsterdam: Springer; 2009. p. 580.
Barton K. MuMIn: multi-model infectence. In: R package version 1.43.6 http://mumin.r-forge.r-project.org/. 2019.
Brewer MJ, Butler A, Cooksley SL. The relative performance of AIC, AICc and BIC in the presence of unobserved heterogeneity. Methods Ecol Evol. 2016;7(6):679–92.
Article
Google Scholar
Harrison XA. A comparison of observation-level random effect and beta-binomial models for modelling overdispersion in binomial data in ecology & evolution. PeerJ. 2015;3:e1114.
Article
PubMed
PubMed Central
Google Scholar
Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. 2020. http://florianhartig.github.io/DHARMa/.
Lewis F, Butler A, Gilbert L. A unified approach to model selection using the likelihood ratio test. Methods Ecol Evol. 2011;2:155–62.
Article
Google Scholar
Harrison XA. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ. 2014;2:e616.
Article
PubMed
PubMed Central
Google Scholar
Elston DA, Moss R, Boulinier T, Arrowsmith C, Lambin X. Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology. 2001;122(5):563–9.
Article
CAS
PubMed
Google Scholar
Hillyard P. Ticks of North-west Europe. Barnes RS, Crothers JH, editors. Field Studies Council; 1996. p. 178.
Hofmeester TR, Jansen PA, Wijnen HJ, Coipan EC, Fonville M, Prins HHT, et al. Cascading effects of predator activity on tick-borne disease risk. Proc R Soc B Biol Sci. 2017;284:20170453.
Article
Google Scholar
Gilbert L, Brunker K, Lande U, Klingen I, Grøva L. Agriculture, ecosystems and environment environmental risk factors for Ixodes ricinus ticks and their infestation on lambs in a changing ecosystem: implications for tick control and the impact of woodland encroachment on tick-borne disease in livestock. Agric Ecosyst Environ. 2017;237:265–73.
Article
Google Scholar
Gilbert L, Norman R, Laurenson KM, Reid HW, Hudson PJ. Disease persistence and apparent competition in a three-host community: an empirical and analytical study of large-scale, wild populations. J Anim Ecol. 2001;70(6):1053–61.
Article
Google Scholar
Hofmeester TR, Sprong H, Jansen PA, Prins HHT, van Wieren SE. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests. Parasit Vectors. 2017;10(1):433.
Article
PubMed
PubMed Central
Google Scholar
Klaus C, Gethmann J, Hoffmann B, Ziegler U, Heller M, Beer M. Tick infestation in birds and prevalence of pathogens in ticks collected from different places in Germany. Parasitol Res. 2016;115:2729–40.
Article
PubMed
PubMed Central
Google Scholar
Herder DM, Helle S, Niemelä P, Henttonen H, Helle T. Large herbivore grazing limits small-mammal densities in Finnish Lapland. Ann Zool Fennici. 2016;53(3–4):154–64.
Article
Google Scholar
Skuballa J, Petney T, Pfäffle M, Oehme R, Hartelt K, Fingerle V, et al. Occurrence of different Borrelia burgdorferi sensu lato genospecies including B. afzelii, B. bavariensis, and B. spielmanii in hedgehogs (Erinaceus spp.) in Europe. Ticks Tick Borne Dis. 2012;3(1):8–13.
Article
PubMed
Google Scholar
Jahfari S, Ruyts SC, Frazer-Mendelewska E, Jaarsma R, Verheyen K, Sprong H. Melting pot of tick-borne zoonoses: the European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas. Parasit Vectors. 2017;10(1):1–9.
Article
Google Scholar
Gern L, Rouvinez E, Naime Toutoungi L, Godfroid E. Transmission cycles of Borrelia burgdorferi sensu lato involving Ixodes ricinus and/or I. hexagonus ticks and the European hedgehog, Erinaceus europaeus, in suburban and urban areas in Switzerland. Folia Parasitol. 1997;44(4):309–14.
CAS
Google Scholar
Eccard JA, Pusenius J, Sundell J, Halle S, Ylönen H. Foraging patterns of voles at heterogeneous avian and uniform mustelid predation risk. Oecologia. 2008;157(4):725–34.
Article
PubMed
Google Scholar
Smit R, Bokdam J, Ouden JD, Olff H, Schrijvers M. Effects of introduction and exclusion of large herbivores on small rodent communities. Plant Ecol. 2011;155(1):119–27.
Article
Google Scholar
van Duijvendijk G. The ecology of Lyme borreliosis risk. Wageningen: Wageningen University; 2016.
Google Scholar
Logiudice K, Duerr STK, Newhouse MJ, Schmidt K, Killilea ME, Ostfeld RS. Impact of host community composition on Lyme disease risk. Ecology. 2008;89(10):2841–9.
Article
PubMed
Google Scholar