Liu TL, Fan XC, Wang Y, Wang YX, Wang JW, Song JK, et al. Micro-RNA expression profile of chicken small intestines during Eimeria necatrix infection. Poult Sci. 2020;99:2444–51.
Article
PubMed Central
PubMed
Google Scholar
Blake DP, Tomley FM. Securing poultry production from the ever-present Eimeria challenge. Trends Parasitol. 2014;30:12–9.
Article
PubMed
Google Scholar
Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines. 2006;5:143–63.
Article
CAS
PubMed
Google Scholar
Chapman HD. Biochemical, genetic and applied aspects of drug resistance in Eimeria parasites of the fowl. Avian Pathol. 1997;26:221–44.
Article
CAS
PubMed
Google Scholar
Han HY, Lin JJ, Zhao QP, Dong H, Jiang LL, Xu MQ, et al. Identification of differentially expressed genes in early stages of Eimeria tenella by suppression subtractive hybridization and cDNA microarray. J Parasitol. 2010;96:95–102.
Article
CAS
PubMed
Google Scholar
Wallach M, Smith NC, Braun R, Eckert J. Potential control of chicken coccidiosis by maternal immunization. Parasitol Today. 1995;11:262–5.
Article
Google Scholar
Dalloul RA, Lillehoj HS. Recent advances in immunomodulation and vaccination strategies against coccidiosis. Avian Dis. 2005;49:1–8.
Article
PubMed
Google Scholar
Venkatas J, Adeleke MA. A review of Eimeria antigen identification for the development of novel anticoccidial vaccines. Parasitol Res. 2019;118:1701–10.
Article
CAS
PubMed
Google Scholar
Liu D, Wang F, Cao L, Wang L, Su S, Hou Z, et al. Identification and characterization of a cDNA encoding a gametocyte-specific protein of the avian coccidial parasite Eimeria necatrix. Mol Biochem Parasitol. 2020;240:111318.
Article
CAS
PubMed
Google Scholar
Allen PC, Fetterer RH. Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clin Microbiol Rev. 2002;15:58–65.
Article
CAS
PubMed Central
PubMed
Google Scholar
Augustine PC. Cell: sporozoite interactions and invasion by apicomplexan parasites of the genus Eimeria. Int J Parasitol. 2001;31:1–8.
Article
CAS
PubMed
Google Scholar
McDonald V, Shirley MW. The endogenous development of virulent strains and attenuated precocious lines of Eimeria tenella and E. necatrix. J Parasitol. 1987;73:993–7.
Article
CAS
PubMed
Google Scholar
Matsubayashi M, Hatta T, Miyoshi T, Alim MA, Yamaji K, Shimura K. Synchronous development of Eimeria tenella in chicken caeca and utility of laser microdissection for purification of single stage schizont RNA. Parasitology. 2012;139:1553–61.
Article
CAS
PubMed
Google Scholar
Walker RA, Sharman PA, Miller CM, Lippuner C, Okoniewski M, Eichenberger RM. RNA-Seq analysis of the Eimeria tenella gametocyte transcriptome reveals clues about the molecular basis for sexual reproduction and oocyst biogenesis. BMC Genomics. 2015;16:94.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang X, Zou W, Yu H, Lin Y, Dai G, Zhang T, et al. RNA Sequencing analysis of chicken cecum tissues following Eimeria tenella infection in vivo. Genes (Basel). 2019;10:420.
Article
CAS
Google Scholar
Li C, Yan X, Lillehoj HS, Oh S, Liu L, Sun Z, et al. Eimeria maxima-induced transcriptional changes in the cecal mucosa of broiler chickens. Parasit Vector. 2019;12:285.
Article
CAS
Google Scholar
Rhoads A, Au KF. PacBio sequencing and its applications. Genom Proteom Bioinf. 2015;13:278–89.
Article
Google Scholar
Chen D, Du Y, Fan X, Zhu Z, Jiang H, Wang J, et al. Reconstruction and functional annotation of Ascosphaera apis full-length transcriptome utilizing PacBio long reads combined with Illumina short reads. J Invertebr Pathol. 2020;176:107475.
Article
CAS
PubMed
Google Scholar
Mehjabin R, Xiong L, Huang R, Yang C, Chen G, He L. Full-length transcriptome sequencing and the discovery of new transcripts in the unfertilized eggs of Zebrafish (Danio rerio). G3 (Bethesda). 2019;9:1831–8.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chao Y, Yuan J, Guo T, Xu L, Mu Z, Han L. Analysis of transcripts and splice isoforms in Medicago sativa L. by single-molecule long-read sequencing. Plant Mol Biol. 2019;99:219–35.
Article
CAS
PubMed
Google Scholar
Reid AJ, Blake DP, Ansari HR, Billington K, Browne HP, Bryant J, et al. Genomic analysis of the causative agents of coccidiosis in domestic chickens. Genome Res. 2014;24:1676–85.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gao Y, Suding Z, Wang L, Liu D, Su S, Xu J, et al. Full-length transcriptome sequence analysis of Eimeria necatrix unsporulated oocysts and sporozoites identifies genes involved in cellular invasion. Vet Parasitol. 2021;296:109480.
Article
CAS
PubMed
Google Scholar
Khalafalla RE, Daugschies A. Single oocyst infection: a simple method for isolation of Eimeria spp. from the mixed field samples. Parasitol Res. 2010;107:187–8.
Article
CAS
PubMed
Google Scholar
Liu D, Cao L, Zhu Y, Deng C, Su S, Xu J, et al. Cloning and characterization of an Eimeria necatrix gene encoding a gametocyte protein and associated with oocyst wall formation. Parasit Vector. 2014;7:27.
Article
CAS
Google Scholar
Mo PH, Ma QT, Ji XX, Song P, Tao JP, Li JG. Effects of artemisinin treatment to microneme gene transcription in second-generation merozoites and pathological changes of caecum in chickens infected by Eimeria tenella. Acta Vet Zootech Sinica. 2014;45:833–8.
CAS
Google Scholar
Su S, Hou Z, Liu D, Jia C, Wang L, Xu J, et al. Comparative transcriptome analysis of second- and third-generation merozoites of Eimeria necatrix. Parasit Vector. 2017;10:388.
Article
CAS
Google Scholar
Gordon SP, Tseng E, Salamov A, Zhang J, Meng X, Zhao Z, et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. PLoS ONE. 2015;10:e0132628.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bayega A, Fahiminiya S, Oikonomopoulos S, Ragoussis J. Current and future methods for mRNA analysis: a drive toward single molecule sequencing. Methods Mol Biol. 2018;1783:209–41.
Article
PubMed
Google Scholar
Salmela L, Rivals E. LoRDEC: accurate and efficient long read error correction. Bioinformatics. 2014;30:3506–14.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21:1859–75.
Article
CAS
PubMed
Google Scholar
Alamancos GP, Pagès A, Trincado JL, Bellora N, Eyras E. Leveraging transcript quantification for fast computation of alternative splicing profiles. RNA. 2015;21:1521–31.
Article
CAS
PubMed Central
PubMed
Google Scholar
Abdel-Ghany SE, Hamilton M, Jacobi JL, Ngam P, Devitt N, Schilkey F, et al. A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun. 2016;7:11706.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kumar S, Razzaq SK, Vo AD, Gautam M, Li H. Identifying fusion transcripts using next generation sequencing. Wiley Interdiscip Rev RNA. 2016;7:811–23.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang B, Tseng E, Regulski M, Clark TA, Hon T, Jiao Y. Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun. 2016;7:11708.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhang HM, Liu T, Liu CJ, Song SY, Zhang XT, Liu W, et al. Animal TFDB 2.0: A resource for expression, prediction and functional study of animal transcription factors. Nucleic Acids Res. 2014;43:D76–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li A, Zhang J, Zhou Z. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics. 2014;15:311.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35:W345–9.
Article
PubMed Central
PubMed
Google Scholar
Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41:e166–e166.
Article
CAS
PubMed Central
PubMed
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2015;44:D279–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22:1760–74.
Article
CAS
PubMed Central
PubMed
Google Scholar
Su S, Hou Z, Liu D, Jia C, Wang L, Xu J, et al. Comparative transcriptome analysis of Eimeria necatrix third-generation merozoites and gametocytes reveals genes involved in sexual differentiation and gametocyte development. Vet Parasitol. 2018;252:35–46.
Article
CAS
PubMed
Google Scholar
Zhang Y, Nyong A, Maraga T, Shi T, Yang P. The complexity of alternative splicing and landscape of tissue-specific expression in lotus (Nelumbo nucifera) unveiled by Illumina-and single-molecule real-time-based RNA-sequencing. DNA Res. 2019;26:301–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marquez Y, Brown JW, Simpson C, Barta A, Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 2012;22:1184–95.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chao Y, Yuan J, Li S, Jia S, Han L, Xu L. Analysis of transcripts and splice isoforms in red clover (Trifolium pratense L.) by single-molecule long-read sequencing. BMC Plant Biol. 2018;18:300.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wiedmer S, Erdbeer A, Volke B, Randel S, Kapplusch F, Hanig S, et al. Identification and analysis of Eimeria nieschulzi gametocyte genes reveal splicing events of gam genes and conserved motifs in the wall-forming proteins within the genus Eimeria (Coccidia, Apicomplexa). Parasite. 2017;24:50.
Article
PubMed Central
PubMed
Google Scholar
Li JX, He JJ, Elsheikha HM, Chen D, Zhai BT, Zhu XQ, et al. Toxoplasma gondii ROP17 inhibits the innate immune response of HEK293T cells to promote its survival. Parasitol Res. 2019;118:783–92.
Article
PubMed
Google Scholar
Yeoh LM, Goodman CD, Mollard V, McHugh E, Lee VV, Sturm A, et al. Alternative splicing is required for stage differentiation in malaria parasites. Genome Biol. 2019;20:151.
Article
PubMed Central
CAS
PubMed
Google Scholar
Thatcher SR, Zhou W, Leonard A, Wang BB, Beatty M, et al. Genome-wide analysis of alternative splicing in Zea mays: landscape and genetic regulation. Plant Cell. 2014;26:3472–87.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhu G, Li W, Zhang F, Guo W. RNA-seq analysis reveals alternative splicing under salt stress in cotton Gossypium davidsonii. BMC Genomics. 2018;19:73.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang R, Calixto CP, Marquez Y, Venhuizen P, Tzioutziou NA, Guo W, et al. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res. 2017;45:5061–73.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tilgner H, Jahanbani F, Blauwkamp T, Moshrefi A, Jaeger E, Chen F, et al. Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecular co-association of distant splicing events. Nat Biotechnol. 2015;33:736.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang T, Wang H, Cai D, Gao Y, Zhang H, Wang Y, et al. Comprehensive profiling of rhizome-associated alternative splicing and alternative polyadenylation in moso bamboo (Phyllostachys edulis). Plant J. 2017;91:684–99.
Article
CAS
PubMed
Google Scholar
Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3’ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science. 2010;327:94–7.
Article
CAS
PubMed
Google Scholar
Mayr C, Bartel DP. Widespread shortening of 3’ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gruber AJ, Zavolan M. Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet. 2019;20:599–614.
Article
CAS
PubMed
Google Scholar
Stevens AT, Howe DK, Hunt AG. Characterization of mRNA polyadenylation in the apicomplexa. PLoS ONE. 2018;13:e0203317.
Article
PubMed Central
CAS
PubMed
Google Scholar
Clement SL, Koslowsky DJ. Unusual organization of a developmentally regulated mitochondrial RNA polymerase (TBMTRNAP) gene in Trypanosoma brucei. Gene. 2001;272:209–18.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chao Q, Gao ZF, Zhang D, Zhao BG, Dong FQ, Fu CX, et al. The developmental dynamics of the Populus stem transcriptome. Plant Biotechnol J. 2019;17:206–19.
Article
CAS
PubMed
Google Scholar
Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res. 2010;20:646–54.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang M, Wang P, Liang F, Ye Z, Li J, Shen C, et al. A global survey of alternative splicing in allopolyploid cotton: landscape, complexity and regulation. New Phytol. 2018;217:163–78.
Article
CAS
PubMed
Google Scholar
Campbell TL, De Silva EK, Olszewski KL, Elemento O, Llinás M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog. 2010;6:e1001165.
Article
PubMed Central
CAS
PubMed
Google Scholar
Balaji S, Babu MM, Iyer LM, Aravind L. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res. 2005;33:3994–4006.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kaneko I, Iwanaga S, Kato T, Kobayashi I, Yuda M. Genome-wide identification of the target genes of AP2-O, a Plasmodium AP2-family transcription factor. PLoS Pathog. 2015;11:e1004905.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lipsick JS. One billion years of myb. Oncogene. 1996;13:223–35.
CAS
PubMed
Google Scholar
Meneses E, Cárdenas H, Zárate S, Brieba LG, Orozco E, López-Camarillo C, et al. The R2R3 Myb protein family in Entamoeba histolytica. Gene. 2010;455:32–42.
Article
CAS
PubMed
Google Scholar
Gissot M, Briquet S, Refour P, Boschet C, Vaquero C. PfMyb1, a Plasmodium falciparum transcription factor, is required for intra-erythrocytic growth and controls key genes for cell cycle regulation. J Mol Biol. 2005;346:29–42.
Article
CAS
PubMed
Google Scholar
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300.
Article
CAS
PubMed
Google Scholar
Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, et al. LncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 2014;159:1110–25.
Article
CAS
PubMed Central
PubMed
Google Scholar
Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253.
Article
CAS
PubMed
Google Scholar
Menard KL, Haskins BE, Colombo AP, Denkers EY. Toxoplasma gondii manipulates expression of host long noncoding RNA during intracellular infection. Sci Rep. 2018;8:15017.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vasconcelos EJ, Pires DS, Lavezzo GM, Pereira AS, Amaral MS, Verjovski-Almeida S. The Schistosoma mansoni genome encodes thousands of long non-coding RNAs predicted to be functional at different parasite life-cycle stages. Sci Rep. 2017;7:10508.
Article
PubMed Central
CAS
PubMed
Google Scholar
Broadbent KM, Park D, Wolf AR, Van Tyne D, Sims JS, Ribacke U, et al. A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol. 2011;12:R56.
Article
CAS
PubMed Central
PubMed
Google Scholar
Menard KL, Haskins BE, Denkers EY. Impact of Toxoplasma gondii infection on host non-coding RNA responses. Front Cell Infect Microbiol. 2019;9:132.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fan XC, Liu TL, Wang Y, Wu XM, Wang YX, Lai P, et al. Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs in chickens during Eimeria necatrix infection. Parasit Vector. 2020;13:167.
Article
CAS
Google Scholar