Lindgren E, Tälleklint L, Polfeldt T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ Health Perspect. 2000;108(2):119–23.
Article
CAS
Google Scholar
Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit Vectors. 2012. https://doi.org/10.1186/1756-3305-5-8.
Article
PubMed
PubMed Central
Google Scholar
Ogden NH, Lindsay LR, Morshed M, Sockett PN, Artsob H. The emergence of Lyme disease in Canada. Can Med Assoc J. 2009;180(12):1221–4. https://doi.org/10.1503/cmaj.080148.
Article
Google Scholar
Gasmi S, Ogden NH, Lindsay L, Burns S, Fleming S, Badcock J, et al. Surveillance for Lyme disease in Canada: 2009–2015. Can Commun Dis Rep. 2017;43(10):194–9.
Article
CAS
Google Scholar
Brownstein JS, Holford TR, Fish D. Effect of climate change on Lyme disease risk in North America. EcoHealth. 2005;2(1):38–46. https://doi.org/10.1007/s10393-004-0139-x.
Article
PubMed
PubMed Central
Google Scholar
Medlock JM, Leach SA. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect Dis. 2015;15(6):721–30. https://doi.org/10.1016/s1473-3099(15)70091-5.
Article
PubMed
Google Scholar
Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF, Mead PS, et al. Vital signs: trends in reported vectorborne disease cases—United States and Territories, 2004–2016. Morb Mortal Wkly Rep. 2018;67:496–501. https://doi.org/10.15585/mmwr.mm6717e1.
Article
Google Scholar
Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129:S3–14. https://doi.org/10.1017/s0031182004005967.
Article
PubMed
Google Scholar
Gray J, Kahl O, Zintl A. What do we still need to know about Ixodes ricinus? Ticks Tick Borne Dis. 2021;12:3. https://doi.org/10.1016/j.ttbdis.2021.101682.
Article
Google Scholar
Hofmeester TR, Coipan EC, van Wieren SE, Prins HHT, Takken W, Sprong H. Few vertebrate species dominate the Borrelia burgdorferi sl life cycle. Environ Res Lett. 2016;11:4. https://doi.org/10.1088/1748-9326/11/4/043001.
Article
Google Scholar
Morán Cadenas FM, Rais O, Humair PF, Douet V, Moret J, Gern L. Identification of host bloodmeal source and Borrelia burgdorferi sensu lato in field-collected Ixodes ricinus ticks in Chaumont (Switzerland). J Med Entomol. 2007;44(6):1109–17.
Article
Google Scholar
Gray JS. The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Entomol. 1991;79(6):323–33.
Google Scholar
Kahl O, Kämmer D, Leverenz S, Dautel H. Seasonal activity of Ixodes ricinus and its dependence on weather factors in different seasons: results of a multi-annual study under quasi-natural conditions in Germany. In: 14th International Conference on Lyme Borreliosis and Other Tick-Borne Diseases, September 27–30; 2015. Vienna.
Bowman AS, Nuttall PA. Ticks: biology, disease and control. Cambridge: Cambridge University Press; 2008.
Book
Google Scholar
Bregnard C, Rais O, Voordouw MJ. Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasit Vectors. 2020;13:408. https://doi.org/10.1186/s13071-020-04291-z.
Article
PubMed
PubMed Central
Google Scholar
Brugger K, Walter M, Chitimia-Dobler L, Dobler G, Rubel F. Seasonal cycles of the TBE and Lyme borreliosis vector Ixodes ricinus modelled with time-lagged and interval-averaged predictors. Exp Appl Acarol. 2017;73(3–4):439–50. https://doi.org/10.1007/s10493-017-0197-8.
Article
PubMed
PubMed Central
Google Scholar
Ostfeld RS, Canham CD, Oggenfuss K, Winchcombe RJ, Keesing F. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 2006;4(6):1058–68.
Article
CAS
Google Scholar
Krawczyk AI, van Duijvendijk GLA, Swart A, Heylen D, Jaarsma RI, Jacobs FHH, et al. Effect of rodent density on tick and tick-borne pathogen populations: consequences for infectious disease risk. Parasit Vectors. 2020. https://doi.org/10.1186/s13071-020-3902-0.
Article
PubMed
PubMed Central
Google Scholar
Perez G, Bastian S, Agoulon A, Bouju A, Durand A, Faille F, et al. Effect of landscape features on the relationship between Ixodes ricinus ticks and their small mammal hosts. Parasit Vectors. 2016. https://doi.org/10.1186/s13071-016-1296-9.
Article
PubMed
PubMed Central
Google Scholar
Gray JS. The ecology of ticks transmitting Lyme borreliosis. Exp Appl Acarol. 1998;22(5):249–58. https://doi.org/10.1023/a:1006070416135.
Article
Google Scholar
Gray JS, Kahl O, Lane RS, Levin ML, Tsao JI. Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis. 2016;7(5):992–1003. https://doi.org/10.1016/j.ttbdis.2016.05.006.
Article
PubMed
PubMed Central
Google Scholar
Stanek G, Wormser GP, Gray J, Strle F. Lyme borreliosis. Lancet. 2012;379(9814):461–73. https://doi.org/10.1016/s0140-6736(11)60103-7.
Article
PubMed
Google Scholar
Randolph SE. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology. 2004;129:S37–65.
Article
Google Scholar
Ogden NH, Lindsay LR, Beauchamp G, Charron D, Maarouf A, O’Callaghan CJ, et al. Investigating the relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. J Med Entomol. 2004;41(4):622–33.
Article
CAS
Google Scholar
Gray JS, Dautel H, Estrada-Peña A, Kahl O, Lindgren E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis. 2009. https://doi.org/10.1155/2009/593232.
Article
PubMed
PubMed Central
Google Scholar
Ogden NH, Tsao JI. Biodiversity and Lyme disease: dilution or amplification? Epidemics. 2009;1(3):196–206. https://doi.org/10.1016/j.epidem.2009.06.002.
Article
CAS
PubMed
Google Scholar
Randolph SE. Ticks are not insects: consequences of contrasting vector biology for transmission potential. Parasitol Today. 1998;14(5):186–92.
Article
CAS
Google Scholar
Clotfelter ED, Pedersen AB, Cranford JA, Ram N, Snajdr EA, Nolan V, et al. Acorn mast drives long-term dynamics of rodent and songbird populations. Oecologia. 2007;154(3):493–503. https://doi.org/10.1007/s00442-007-0859-z.
Article
PubMed
Google Scholar
Schnurr JL, Ostfeld RS, Canham CD. Direct and indirect effects of masting on rodent populations and tree seed survival. Oikos. 2002;96(3):402–10. https://doi.org/10.1034/j.1600-0706.2002.960302.x.
Article
Google Scholar
Drobyshev I, Niklasson M, Mazerolle MJ, Bergeron Y. Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agric For Meteorol. 2014;192:9–17. https://doi.org/10.1016/j.agrformet.2014.02.010.
Article
Google Scholar
Drobyshev I, Overgaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, et al. Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manag. 2010;259:2160–71. https://doi.org/10.1016/j.foreco.2010.01.037.
Article
Google Scholar
Piovesan G, Adams JM. Masting behaviour in beech: linking reproduction and climatic variation. Can J Bota Revue Canadienne De Botanique. 2001;79(9):1039–47. https://doi.org/10.1139/b01-089.
Article
Google Scholar
Overgaard R, Gemmel P, Karlsson M. Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L) in Sweden. Forestry. 2007;80(5):553–63. https://doi.org/10.1093/forestry/cpm020.
Article
Google Scholar
Pucek Z, Jedrzejewski W, Jedrzejewska B, Pucek M. Rodent population dynamics in a primeval deciduous forest (Bialowieza National Park) in relation to weather, seed crop, and predation. Acta Theriol. 1993;38(2):199–232. https://doi.org/10.4098/AT.arch.93-18.
Article
Google Scholar
Ostfeld RS, Levi T, Keesing F, Oggenfuss K, Canham CD. Tick-borne disease risk in a forest food web. Ecology. 2018;99(7):1562–73. https://doi.org/10.1002/ecy.2386.
Article
PubMed
Google Scholar
Ostfeld RS, Schauber EM, Canham CD, Keesing F, Jones CG, Wolff JO. Effects of acorn production and mouse abundance on abundance and Borrelia burgdorferi infection prevalence of nymphal Ixodes scapularis ticks. Vector-Borne Zoo. 2001;1(1):55. https://doi.org/10.1089/153036601750137688.
Article
CAS
Google Scholar
Schauber EM, Ostfeld RS, Evans AS. What is the best predictor of annual Lyme disease incidence: Weather, mice, or acorns? Ecol Appl. 2005;15(2):575–86. https://doi.org/10.1890/03-5370.
Article
Google Scholar
Brugger K, Walter M, Chitimia-Dobler L, Dobler G, Rubel F. Forecasting next season’s Ixodes ricinus nymphal density: the example of southern Germany 2018. Exp Appl Acarol. 2018;75(3):281–8. https://doi.org/10.1007/s10493-018-0267-6.
Article
PubMed
PubMed Central
Google Scholar
Bregnard C, Rais O, Voordouw MJ. Masting by beech trees predicts the risk of Lyme disease. Parasit Vectors. 2021;14(1):168. https://doi.org/10.1186/s13071-021-04646-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Belozerov VN. Chapter 13—Diapause and biological rhythms in ticks. In: Obenchain FD, Galun R, editors. Physiology of ticks. Oxford: Pergamon; 1982. p. 469–500.
Chapter
Google Scholar
Korenberg EI. Seasonal population dynamics of Ixodes ticks and tick-borne encephalitis virus. Exp Appl Acarol. 2000;24(9):665–81. https://doi.org/10.1023/a:1010798518261.
Article
CAS
PubMed
Google Scholar
Dautel H, Dippel C, Kaemmer D, Werkhausen A, Kahl O. Winter activity of Ixodes ricinus in a Berlin forest. Int J Med Microbiol. 2008;298:50–4. https://doi.org/10.1016/j.ijmm.2008.01.010.
Article
Google Scholar
Steele GM, Randolph SE. An experimental evaluation of conventional control measures against the sheep tick, Ixodes ricinus (L.) (Acari, Ixodidae). I. A unimodal seasonal activity pattern. Bull Entomol Res. 1985;75(3):489–99.
Article
Google Scholar
Talleklint L, Jaenson TGT. Seasonal variations in density of questing Ixodes ricinus (Acari: Ixodidae) nymphs and prevalence of infection with B. burgdorferi s.l. in south central Sweden. J Med Entomol. 1996;33(4):592–7.
Article
CAS
Google Scholar
Perret JL, Guigoz E, Rais O, Gern L. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res. 2000;86(7):554–7.
Article
CAS
Google Scholar
Jouda F, Perret JL, Gern L. Ixodes ricinus density, and distribution and prevalence of Borrelia burgdorferi sensu lato infection along an altitudinal gradient. J Med Entomol. 2004;41(2):162–9. https://doi.org/10.1603/0022-2585-41.2.162.
Article
PubMed
Google Scholar
Hartemink N, van Vliet A, Sprong H, Jacobs F, Garcia-Marti I, Zurita-Milla R, et al. Temporal-spatial variation in questing tick activity in the Netherlands: the effect of climatic and habitat factors. Vector-Borne Zoonot. 2019;19(7):494–505. https://doi.org/10.1089/vbz.2018.2369.
Article
Google Scholar
Gray JS. Studies on the dynamics of active populations of the sheep tick, Ixodes-ricinus L in Co Wicklow, Ireland. Acarologia. 1984;25(2):167–78.
CAS
PubMed
Google Scholar
Hauser G, Rais O, Morán Cadenas F, Gonseth Y, Bouzelboudjen M, Gern L. Influence of climatic factors on Ixodes ricinus nymph abundance and phenology over a long-term monthly observation in Switzerland (2000–2014). Parasit Vectors. 2018;11(1):289. https://doi.org/10.1186/s13071-018-2876-7.
Article
PubMed
PubMed Central
Google Scholar
Perret JL, Rais O, Gern L. Influence of climate on the proportion of Ixodes ricinus nymphs and adults questing in a tick population. J Med Entomol. 2004;41(3):361–5. https://doi.org/10.1603/0022-2585-41.3.361.
Article
PubMed
Google Scholar
Morán Cadenas F, Rais O, Jouda F, Douet V, Humair P-F. Phenology of Ixodes ricinus and infection with Borrelia burgdorferi sensu lato along a North- and South-facing altitudinal gradient on Chaumont Mountain, Switzerland. J Med Entomol. 2007;44(4):683–93.
Article
Google Scholar
Burri C, Cadenas FM, Douet V, Moret J, Gern L. Ixodes ricinus density and infection prevalence of Borrelia burgdorferi sensu lato along a north-facing altitudinal gradient in the Rhone Valley (Switzerland). Vector-Borne Zoo. 2007;7(1):50–8. https://doi.org/10.1089/vbz.2006.0569.
Article
Google Scholar
Randolph SE, Green RM, Hoodless AN, Peacey MF. An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol. 2002;32(8):979–89. https://doi.org/10.1016/s0020-7519(02)00030-9.
Article
PubMed
Google Scholar
Estrada-Peña A, Martinez JM, Acedo CS, Quilez J, Del Cacho E. Phenology of the tick, Ixodes ricinus, in its southern distribution range (central Spain). Med Vet Entomol. 2004;18(4):387–97. https://doi.org/10.1111/j.0269-283X.2004.00523.x.
Article
PubMed
Google Scholar
Daniel M, Maly M, Danielova V, Kriz B, Nuttall P. Abiotic predictors and annual seasonal dynamics of Ixodes ricinus, the major disease vector of Central Europe. Parasit Vectors. 2015. https://doi.org/10.1186/s13071-015-1092-y.
Article
PubMed
PubMed Central
Google Scholar
Sormunen JJ, Klemola T, Vesterinen EJ, Vuorinen I, Hytonen J, Hanninen J, et al. Assessing the abundance, seasonal questing activity, and Borrelia and tick-borne encephalitis virus (TBEV) prevalence of Ixodes ricinus ticks in a Lyme borreliosis endemic area in Southwest Finland. Ticks Tick Borne Dis. 2016;7(1):208–15. https://doi.org/10.1016/j.ttbdis.2015.10.011.
Article
PubMed
Google Scholar
Cayol C, Koskela E, Mappes T, Siukkola A, Kallio ER. Temporal dynamics of the tick Ixodes ricinus in northern Europe: epidemiological implications. Parasit Vectors. 2017. https://doi.org/10.1186/s13071-017-2112-x.
Article
PubMed
PubMed Central
Google Scholar
Borde JP, Kaier K, Hehn P, Matzarakis A, Frey S, Bestehorn M, et al. The complex interplay of climate, TBEV vector dynamics and TBEV infection rates in ticks-Monitoring a natural TBEV focus in Germany, 2009–2018. PLoS ONE. 2021. https://doi.org/10.1371/journal.pone.0244668.
Article
PubMed
PubMed Central
Google Scholar
Vogelgesang JR, Walter M, Kahl O, Rubel F, Brugger K. Long-term monitoring of the seasonal density of questing ixodid ticks in Vienna (Austria): setup and first results. Exp Appl Acarol. 2020;81(3):409–20. https://doi.org/10.1007/s10493-020-00511-4.
Article
PubMed
PubMed Central
Google Scholar
Gray JS. The development and questing activity of Ixodes ricinus (L.) (Acari, Ixodidae) under field conditions in Ireland. Bull Entomol Res. 1982;72(2):263–70. https://doi.org/10.1017/s0007485300010567.
Article
Google Scholar
Knap N, Durmisi E, Saksida A, Korva M, Petrovec M, Avsic-Zupanc T. Influence of climatic factors on dynamics of questing Ixodes ricinus ticks in Slovenia. Vet Parasitol. 2009;164(2–4):275–81. https://doi.org/10.1016/j.vetpar.2009.06.001.
Article
PubMed
Google Scholar
Burtis JC, Sullivan P, Levi T, Oggenfuss K, Fahey TJ, Ostfeld RS. The impact of temperature and precipitation on blacklegged tick activity and Lyme disease incidence in endemic and emerging regions. Parasit Vectors. 2016. https://doi.org/10.1186/s13071-016-1894-6.
Article
PubMed
PubMed Central
Google Scholar
MacLeod J. Ixodes ricinus in relation to its physical environment: II. The factors governing survival and activity. Parasitology. 1935;27(1):123–44. https://doi.org/10.1017/S0031182000015006.
Article
Google Scholar
Lees AD. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology. 1946;37(1–2):1–20. https://doi.org/10.1017/s0031182000013093.
Article
CAS
PubMed
Google Scholar
Lees AD. The sensory physiology of the sheep tick Ixodes ricinus L. J Exp Biol. 1948;25(2):145–207.
Article
Google Scholar
van Oort BEH, Hovelsrud GK, Risvoll C, Mohr CW, Jore S. A mini-review of Ixodes ticks climate sensitive infection dispersion risk in the Nordic region. Int J Environ Res Public Health. 2020;17(15):5387.
Article
Google Scholar
The Swiss National Forest Inventory NFI: Portrait des arbres forestiers les plus frequents; 2017. https://www.lfi.ch/resultate/baumarten-fr.php. Accessed 12 Apr 2021.
Randolph SE, Storey K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol. 1999;36(6):741–8.
Article
CAS
Google Scholar
Bogdziewicz M, Kelly D, Thomas PA, Lageard JGA, Hacket-Pain A. Climate warming disrupts mast seeding and its fitness benefits in European beech. Nature Plants. 2020;6(2):88–94. https://doi.org/10.1038/s41477-020-0592-8.
Article
PubMed
Google Scholar
Ascoli D, Maringer J, Hacket-Pain A, Conedera M, Drobyshev I, Motta R, et al. Two centuries of masting data for European beech and Norway spruce across the European continent. Ecology. 2017;98(5):1473. https://doi.org/10.1002/ecy.1785.
Article
PubMed
Google Scholar
Knülle W, Rudolph D. Chapter 2—Humidity relationships and water balance of ticks. In: Obenchain FD, Galun R, editors. Physiology of ticks. Oxford: Pergamon; 1982. p. 43–70.
Chapter
Google Scholar
Herrmann C, Gern L. Search for blood or water is influenced by Borrelia burgdorferi in Ixodes ricinus. Parasit Vectors. 2015. https://doi.org/10.1186/s13071-014-0526-2.
Article
PubMed
PubMed Central
Google Scholar
Herrmann C, Voordouw MJ, Gern L. Ixodes ricinus ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, have higher energy reserves. Int J Parasitol. 2013;43(6):477–83. https://doi.org/10.1016/j.ijpara.2012.12.010.
Article
CAS
PubMed
Google Scholar
Hurry G, Maluenda E, Sarr A, Belli A, Hamilton PT, Duron O, et al. Infection with Borrelia afzelii and manipulation of the egg surface microbiota have no effect on the fitness of immature Ixodes ricinus ticks. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-90177-8.
Article
PubMed
PubMed Central
Google Scholar
Burnham K, Anderson D. Model selection and multi-model inference. Berlin: Springer; 2002.
Google Scholar
Bartoń K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.Rproject.org/package=MuMIn.
R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.
Google Scholar
Wood S. Generalized additive models: an introduction with R. Boca Raton: CRC Press; 2006.
Book
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.
Book
Google Scholar
Rubel F, Brugger K. Tick-borne encephalitis incidence forecasts for Austria, Germany, and Switzerland. Ticks Tick Borne Dis. 2020. https://doi.org/10.1016/j.ttbdis.2020.101437.
Article
PubMed
Google Scholar
Rubel F, Brugger K. Operational TBE incidence forecasts for Austria, Germany, and Switzerland 2019–2021. Ticks Tick Borne Dis. 2021. https://doi.org/10.1016/j.ttbdis.2020.101579.
Article
PubMed
Google Scholar
Rubel F, Walter M, Vogelgesang JR, Brugger K. Tick-borne encephalitis (TBE) cases are not random: explaining trend, low- and high-frequency oscillations based on the Austrian TBE time series. BMC Infect Dis. 2020;20(1):448. https://doi.org/10.1186/s12879-020-05156-7.
Article
PubMed
PubMed Central
Google Scholar
Kurtenbach K, Hanincova K, Tsao JI, Margos G, Fish D, Ogden NH. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol. 2006;4:660–9. https://doi.org/10.1038/nrmicro1475.
Article
CAS
PubMed
Google Scholar
Kahl O. Investigations on the water balance of ticks (Acari, Ixodoidea) in the course of their postembryonic development with special reference to active water vapour uptake in the engorged phases. Dissertation. Free University of Berlin, Germany, 1989 pp 356 (in German)
Kiewra D, Kryza M, Szymanowski M. Influence of selected meteorological variables on the questing activity of Ixodes ricinus ticks in Lower Silesia, SW Poland. J Vector Ecol. 2014;39(1):138–45. https://doi.org/10.1111/j.1948-7134.2014.12080.x.
Article
PubMed
Google Scholar
Li S, Heyman P, Cochez C, Simons L, Vanwambeke SO. A multi-level analysis of the relationship between environmental factors and questing Ixodes ricinus dynamics in Belgium. Parasit Vectors. 2012. https://doi.org/10.1186/1756-3305-5-149.
Article
PubMed
PubMed Central
Google Scholar
Schwarz A, Maier WA, Kistemann T, Kampen H. Analysis of the distribution of the tick Ixodes ricinus L. (Acari: Ixodidae) in a nature reserve of western Germany using Geographic Information Systems. Int J Hyg Environ Health. 2009;212(1):87–96. https://doi.org/10.1016/j.ijheh.2007.12.001.
Article
PubMed
Google Scholar
Hubalek Z, Halouzka J, Juricova Z. Host-seeking activity of ixodid ticks in relation to weather variables. J Vector Ecol. 2003;28(2):159–65.
PubMed
Google Scholar
Mejlon HA, Jaenson TGT. Questing behaviour of Ixodes ricinus ticks (Acari: Ixodidae). Exp Appl Acarol. 1997;21(12):747–54. https://doi.org/10.1023/a:1018421105231.
Article
Google Scholar
Schulze TL, Jordan RA, Schulze CJ, Hung RW. Precipitation and temperature as predictors of the local abundance of Ixodes scapularis (Acari: Ixodidae) nymphs. J Med Entomol. 2009;46(5):1025–9. https://doi.org/10.1603/033.046.0508.
Article
PubMed
Google Scholar
Herrmann C, Gern L. Do the level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks? Parasitology. 2012;139(3):330–7. https://doi.org/10.1017/s0031182011002095.
Article
CAS
PubMed
Google Scholar
Perret JL, Guerin PM, Diehl PA, Vlimant M, Gern L. Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus. J Exp Biol. 2003;206(11):1809–15. https://doi.org/10.1242/jeb.00345.
Article
PubMed
Google Scholar
Rosa R, Andreo V, Tagliapietra V, Barakova I, Arnoldi D, Hauffe HC, et al. Effect of climate and land use on the spatio-temporal variability of tick-borne bacteria in Europe. Int J Environ Res Public Health. 2018. https://doi.org/10.3390/ijerph15040732.
Article
PubMed
PubMed Central
Google Scholar
Isaksen K, Odegard RS, Etzelmüller B, Hilbich C, Hauck C, Farbrot H, et al. Degrading mountain permafrost in Southern Norway: spatial and temporal variability of mean ground temperatures, 1999–2009. Permafrost Periglac Process. 2011;22(4):361–77. https://doi.org/10.1002/ppp.728.
Article
Google Scholar
Dautel H, Kammer D, Kahl O. How an extreme weather spell in winter can influence vector tick abundance and tick-borne disease incidence. Ecol Prev Lyme borreliosis. 2016;4:335.
Article
Google Scholar
Jore S, Vanwambeke SO, Viljugrein H, Isaksen K, Kristoffersen AB, Woldehiwet Z, et al. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasit Vectors. 2014. https://doi.org/10.1186/1756-3305-7-11.
Article
PubMed
PubMed Central
Google Scholar
Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George JC, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors. 2013. https://doi.org/10.1186/1756-3305-6-1.
Article
PubMed
PubMed Central
Google Scholar
Lindsay LR, Barker IK, Surgeoner GA, McEwen SA, Gillespie TJ, Robinson JT. Survival and development of Ixodes-scapularis (Acari, Ixodidae) under various climatic conditions in Ontario, Canada. J Med Entomol. 1995;32(2):143–52. https://doi.org/10.1093/jmedent/32.2.143.
Article
CAS
PubMed
Google Scholar
McEnroe WD. The effect of snowcover on an American dog tick, Dermacentor-variabilis (Say) (Acari, Ixodidae) population under a harsh winter environment. Zeitschrift Fur Angewandte Entomologie-J Appl Entomol. 1984;97(5):481–4.
Google Scholar
Kilpatrick AM, Dobson ADM, Levi T, Salkeld DJ, Swei A, Ginsberg HS, et al. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos T Roy Soc B. 2017. https://doi.org/10.1098/rstb.2016.0117.
Article
Google Scholar