Albert T, Braun PG, Saffaf J, Wiacek C. Physical methods for the decontamination of meat surfaces. Curr Clin Microbiol Rep. 2021:1–12.
Fan X, Wang W. Quality of fresh and fresh-cut produce impacted by nonthermal physical technologies intended to enhance microbial safety. Crit Rev Food Sci Nutr. 2020. https://doi.org/10.1080/10408398.2020.1816892.
Article
PubMed
Google Scholar
Knudson GB, Shoemaker MO, Elliott TB. Inactivation of biological threat agents with nonionizing radiation. Radiat Inact Bioterror Agents. 2005;365:161.
CAS
Google Scholar
Sommers CH, Sheen S. Inactivation of avirulent Yersinia pestis on food and food contact surfaces by ultraviolet light and freezing. Food Microbiol. 2015;50:1–4.
CAS
PubMed
Google Scholar
Vatansever F, Ferraresi C, de Sousa MV, Yin R, Rineh A, Sharma SK, et al. Can biowarfare agents be defeated with light? Virulence. 2013;4:796–825.
PubMed
PubMed Central
Google Scholar
Gaetani R, Lacotte V, Dufour V, Clavel A, Duport G, Gaget K, et al. Sustainable laser-based technology for insect pest control. Sci Rep. 2021;11:11068.
CAS
PubMed
PubMed Central
Google Scholar
Koutchma T. Principles and applications of UV light technology. Ultraviolet light in food technology. Boca Raton: CRC Press; 2019. p. 1–48.
Google Scholar
Monteiro MLG, do Rosário DK, de Carvalho APA, Conte-Junior CA. Application of UV-C light to improve safety and overall quality of fish: a systematic review and meta-analysis. Trends Food Sci Technol. 2021.
Urban L, Charles F, de Miranda MRA, Aarrouf J. Understanding the physiological effects of UV-C light and exploiting its agronomic potential before and after harvest. Plant Physiol Biochem. 2016;105:1–11.
CAS
PubMed
Google Scholar
Calgua B, Carratala A, Guerrero-Latorre L, de Abreu CA, Kohn T, Sommer R, et al. UVC inactivation of dsDNA and ssRNA viruses in water: UV fluences and a qPCR-based approach to evaluate decay on viral infectivity. Food Environ Virol. 2014;6:260–8.
CAS
PubMed
Google Scholar
Tran HDM, Boivin S, Kodamatani H, Ikehata K, Fujioka T. Potential of UV-B and UV-C irradiation in disinfecting microorganisms and removing N-nitrosodimethylamine and 1,4-dioxane for potable water reuse: a review. Chemosphere. 2021;286:131682.
Google Scholar
Walker CM, Ko G. Effect of ultraviolet germicidal irradiation on viral aerosols. Environ Sci Technol. 2007;41:5460–5.
CAS
PubMed
Google Scholar
Atci F, Cetin YE, Avci M, Aydin O. Evaluation of in-duct UV-C lamp array on air disinfection: a numerical analysis. Sci Technol Built Environ. 2020;27:98–108.
Google Scholar
Memarzadeh F. A review of recent evidence for utilizing ultraviolet irradiation technology to disinfect both indoor air and surfaces. Appl Biosaf. 2021;26:52–6.
Google Scholar
de Groot T, Chowdhary A, Meis JF, Voss A. Killing of Candida auris by UV-C: importance of exposure time and distance. Mycoses. 2019;62:408–12.
PubMed
PubMed Central
Google Scholar
Martínez de Alba AE, Rubio MB, Morán-Diez ME, Bernabéu C, Hermosa R, Monte E. Microbiological evaluation of the disinfecting potential of UV-C and UV-C plus ozone generating robots. Microorganisms. 2021;9:172.
PubMed
PubMed Central
Google Scholar
Dos Santos T, de Castro LF. Evaluation of a portable Ultraviolet C (UV-C) device for hospital surface decontamination. Photodiagnosis Photodyn Ther. 2021;33:102161.
CAS
PubMed
Google Scholar
Biasin M, Bianco A, Pareschi G, Cavalleri A, Cavatorta C, Fenizia C, et al. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication. Sci Rep. 2021;11:1–7.
Google Scholar
Volchenkov G. Experience with UV-C air disinfection in some Russian hospitals. Photochem Photobiol. 2021;97:549–51.
CAS
PubMed
PubMed Central
Google Scholar
Fisher EM, Shaffer RE. A method to determine the available UV-C dose for the decontamination of filtering facepiece respirators. J Appl Microbiol. 2011;110:287–95.
CAS
PubMed
Google Scholar
Rowan NJ, Laffey JG. Challenges and solutions for addressing critical shortage of supply chain for personal and protective equipment (PPE) arising from coronavirus disease (COVID19) pandemic–case study from the Republic of Ireland. Sci Total Environ. 2020;725:138532.
CAS
PubMed
PubMed Central
Google Scholar
Vernez D, Save J, Oppliger A, Concha-Lozano N, Hopf NB, Niculita-Hirzel H, et al. Reusability of filtering facepiece respirators after decontamination through drying and germicidal UV irradiation. BMJ Glob Health. 2020;5:e003110.
PubMed
PubMed Central
Google Scholar
Bergman RS, Germicidal UV. Sources and systems. Photochem Photobiol. 2021;97:466–70.
CAS
PubMed
Google Scholar
Committee IP: Illuminating Engineering Society Committee Report—IES CR-2–20-V1. June 3, 2020.
Mandal R, Mohammadi X, Wiktor A, Singh A, Pratap SA. Applications of pulsed light decontamination technology in food processing: an overview. Appl Sci. 2020;10:3606.
CAS
Google Scholar
Kim SJ, Kim DK, Kang DH. Using UVC light-emitting diodes at wavelengths of 266 to 279 nanometers to inactivate foodborne pathogens and pasteurize sliced cheese. Appl Environ Microbiol. 2016;82:11–7.
CAS
PubMed
Google Scholar
Attia S, Grissa KL, Mailleux A-C, Lognay G, Heuskin S, Mayoufi S, et al. Effective concentrations of garlic distillate (Allium sativum) for the control of Tetranychus urticae (Tetranychidae). J Appl Entomol. 2012;136:302–12.
Google Scholar
Abd El-Wahab RA. Direct effects of light emitting diodes (LEDs) on the two-spotted spider mite, Tetranychus urticae. Int J Sci Res Agricult Sci. 2015;2:79–85.
Google Scholar
Short BD, Janisiewicz W, Takeda F, Leskey TC. UV-C irradiation as a management tool for Tetranychus urticae on strawberries. Pest Manage Sci. 2018;74:2419–23.
CAS
Google Scholar
Suzuki T, Watanabe M, Takeda M. UV tolerance in the two-spotted spider mite Tetranychus urticae. J Insect Physiol. 2009;55:649–54.
CAS
PubMed
Google Scholar
Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PLoS ONE. 2015;10:e0146021.
PubMed
PubMed Central
Google Scholar
Hitchcock RT. Nonionizing radiation. Applications and computational elements of industrial hygiene. Boca Raton: CRC Press; 2018. p. 485–554.
Google Scholar
Parrish JA, Anderson RR, Urbach F, Pitts D. Effects of ultraviolet radiation on microorganisms and animal cells. UV-A. Boston: Springer; 1978. p. 85–106.
Google Scholar
Yin R, Dai T, Avci P, Jorge AES, de Melo WC, Vecchio D, et al. Light based anti-infectives: ultraviolet C irradiation, photodynamic therapy, blue light, and beyond. Curr Opin Pharmacol. 2013;13:731–62.
CAS
PubMed
Google Scholar
Barcelo JA. Photoeffects of visible and ultraviolet radiation on the two-spotted spider mite, Tetranychus urticae. Photochem Photobiol. 1981;33:703–6.
Google Scholar
Barcelo JA, Calkins J. The kinetics of avoidance of simulated solar UV radiation by two arthropods. Biophys J. 1980;32:921–9.
CAS
PubMed
PubMed Central
Google Scholar
Fukaya M, Uesugi R, Ohashi H, Sakai Y, Sudo M, Kasai A, et al. Tolerance to solar ultraviolet-B radiation in the citrus red mite, an upper surface user of host plant leaves. Photochem Photobiol. 2013;89:424–31.
CAS
PubMed
Google Scholar
Koveos DS, Suzuki T, Terzidou A, Kokkari A, Floros G, Damos P, et al. Egg hatching response to a range of ultraviolet-B (UV-B) radiation doses for four predatory mites and the herbivorous spider mite Tetranychus urticae. Exp Appl Acarol. 2017;71:35–46.
CAS
PubMed
Google Scholar
Murata Y, Osakabe M. The Bunsen-Roscoe reciprocity law in ultraviolet-B-induced mortality of the two-spotted spider mite Tetranychus urticae. J Insect Physiol. 2013;59:241–7.
CAS
PubMed
Google Scholar
Murata Y, Osakabe M. Factors affecting photoreactivation in UVB-irradiated herbivorous spider mite (Tetranychus urticae). Exp Appl Acarol. 2014;63:253–65.
CAS
PubMed
Google Scholar
Nakai K, Murata Y, Osakabe M. Effects of low temperature on spider mite control by intermittent ultraviolet-B irradiation for practical use in greenhouse strawberries. Environ Entomol. 2018;47:140–7.
CAS
PubMed
Google Scholar
Yoshioka Y, Gotoh T, Suzuki T. UV-B susceptibility and photoreactivation in embryonic development of the two-spotted spider mite, Tetranychus urticae. Exp Appl Acarol. 2018;75:155–66.
CAS
PubMed
Google Scholar
Tanaka M, Yase J, Aoki S, Sakurai T, Kanto T, Osakabe M. Physical control of spider mites using ultraviolet-B with light reflection sheets in greenhouse strawberries. J Econ Entomol. 2016;109:1758–65.
PubMed
Google Scholar
Tachi F, Osakabe M. Spectrum-specific UV egg damage and dispersal responses in the phytoseiid predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Environ Entomol. 2014;43:787–94.
PubMed
Google Scholar
Suzuki T, Yoshioka Y, Tsarsitalidou O, Ntalia V, Ohno S, Ohyama K, et al. An LED-based UV-B irradiation system for tiny organisms: system description and demonstration experiment to determine the hatchability of eggs from four Tetranychus spider mite species from Okinawa. J Insect Physiol. 2014;62:1–10.
CAS
PubMed
Google Scholar
Suzuki T, Kojima T, Takeda M, Sakuma M. Photo-orientation regulates seasonal habitat selection in the two-spotted spider mite, Tetranychus urticae. J Exp Biol. 2013;216:977–83.
PubMed
Google Scholar
Sakai Y, Sudo M, Osakabe M. Seasonal changes in the deleterious effects of solar ultraviolet-B radiation on eggs of the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Appl Entomol Zool. 2012;47:67–73.
Google Scholar
Osakabe M. Biological impact of ultraviolet-B radiation on spider mites and its application in integrated pest management. Appl Entomol Zool. 2021:1–17.
Sakai Y, Osakabe M. Spectrum-specific damage and solar ultraviolet radiation avoidance in the two-spotted spider mite. Photochem Photobiol. 2010;86:925–32.
CAS
PubMed
Google Scholar
Lah EFC, Musa RNAR, Ming HT. Effect of germicidal UV-C light (254 nm) on eggs and adult of house dustmites, Dermatophagoides pteronyssinus and Dermatophagoides farinae (Astigmata: Pyroglyhidae). Asian Pac J Trop Biomed. 2012;2:679–83.
PubMed
PubMed Central
Google Scholar
Zvorykin V, Levchenko A, Shutov A, Solomina E, Ustinovskii N, Smetanin I. Long-distance directed transfer of microwaves in tubular sliding-mode plasma waveguides produced by KrF laser in atmospheric air. Phys Plasmas. 2012;19:033509.
Google Scholar
Boardman E, Huang L, Robson-Hemmings J, Smeeton T, Hooper S, Heffernan J. Deep ultraviolet (UVC) laser for sterilisation and fluorescence applications. Sharp technical report. 2012:31–5.
Gómez-Sánchez DL, Antonio-Gutiérrez O, López-Díaz AS, Palou E, López-Malo A, Ramírez-Corona N. Performance of combined technologies for the inactivation of Saccharomyces cerevisiae and Escherichia coli in pomegranate juice: the effects of a continuous-flow UV-microwave system. J Food Process Eng. 2020;43:e13565.
Google Scholar
Mintoff S, Rookes J, Cahill D. Sub-lethal UV-C radiation induces callose, hydrogen peroxide and defence-related gene expression in Arabidopsis thaliana. Plant Biol. 2015;17:703–11.
CAS
PubMed
Google Scholar