de Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, Johnson N, Kocan KM, Mansfield KL, Nijhof AM, Papa A, Rudenko N, Villar M, Alberdi P, Torina A, Ayllón N, Vancova M, Golovchenko M, Grubhoffer L, Caracappa S, Fooks AR, Gortazar C, Rego ROM. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017. https://doi.org/10.3389/fcimb.2017.00114.
Article
PubMed
PubMed Central
Google Scholar
Lee H, Halverson S, Ezinwa N. Mosquito-Borne Diseases. Primary Care: Clinics in Office Practice. 2018;45(3):393–407. https://doi.org/10.1016/j.pop.2018.05.001.
Article
PubMed
Google Scholar
Serafim TD, Coutinho-Abreu IV, Dey R, Kissinger R, Valenzuela JG, Oliveira F, Kamhawi S. Leishmaniasis: The Act of Transmission. Trends Parasitol. 2021;37(11):976–87. https://doi.org/10.1016/j.pt.2021.07.003.
Article
CAS
PubMed
Google Scholar
Hamzaoui BE, Zurita A, Cutillas C, Parola P. Fleas and Flea-Borne Diseases of North Africa. Acta Trop. 2020;211: 105627. https://doi.org/10.1016/j.actatropica.2020.105627.
Article
PubMed
Google Scholar
Sonenshine DE, Simo L. Biology and Molecular Biology of Ixodes scapularis. In: Lyme Disease and Relapsing Fever Spirochetes: Genomics, Molecular Biology, Host Interactions and Disease Pathogenesis; Caister Academic Press, 2021. https://doi.org/10.21775/9781913652616.12.
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front Microbiol. 2021;12: 630438. https://doi.org/10.3389/fmicb.2021.630438.
Article
PubMed
PubMed Central
Google Scholar
Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends Parasitol. 2015;31(7):315–23. https://doi.org/10.1016/j.pt.2015.03.010.
Article
PubMed
PubMed Central
Google Scholar
Wu-Chuang A, Hodžić A, Mateos-Hernández L, Estrada-Peña A, Obregon D, Cabezas-Cruz A. Current debates and advances in tick microbiome research. Curr Res Parasitol Vector-Borne Diseases. 2021;1: 100036. https://doi.org/10.1016/j.crpvbd.2021.100036.
Article
Google Scholar
Duron O, Gottlieb Y. Convergence of nutritional symbioses in obligate blood feeders. Trends Parasitol. 2020;36(10):816–25. https://doi.org/10.1016/j.pt.2020.07.007.
Article
CAS
PubMed
Google Scholar
Zhong Z, Zhong T, Peng Y, Zhou X, Wang Z, Tang H, Wang J. Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. Cell Host Microbe. 2021;29(10):1545-1557.e4. https://doi.org/10.1016/j.chom.2021.08.011.
Article
CAS
PubMed
Google Scholar
Obregón D, Bard E, Abrial D, Estrada-Peña A, Cabezas-Cruz A. Sex-specific linkages between taxonomic and functional profiles of tick gut microbiomes. Front Cell Infect Microbiol. 2019;9:298. https://doi.org/10.3389/fcimb.2019.00298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Hoon Eum J, Harrison R, Valzania L, Yang X, Johnson J, Huck D, Brown M, Strand M. Riboflavin instability is a key factor underlying the requirement of a gut microbiota for mosquito development. Proc Natl Acad Sci. 2021;118(15):e2101080118. https://doi.org/10.1073/pnas.2101080118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol. 2014;80(18):5844–53. https://doi.org/10.1128/AEM.01150-14.
Article
PubMed
PubMed Central
Google Scholar
Estrada-Peña A, Cabezas-Cruz A, Obregón D. Behind taxonomic variability: the functional redundancy in the tick microbiome. Microorganisms. 2020;8(11):1829. https://doi.org/10.3390/microorganisms8111829.
Article
CAS
PubMed Central
Google Scholar
Estrada-Peña A, Cabezas-Cruz A, Obregón D. Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides. Pathogens. 2020;9(4):309. https://doi.org/10.3390/pathogens9040309.
Article
CAS
PubMed Central
Google Scholar
Romoli O, Schönbeck JC, Hapfelmeier S, Gendrin M. Production of germ-free mosquitoes via transient colonisation allows stage-specific investigation of host–microbiota interactions. Nat Commun. 2021;12:942. https://doi.org/10.1038/s41467-021-21195-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hajkazemian M, Bossé C, Mozūraitis R, Emami SN. Battleground midgut: The cost to the mosquito for hosting the malaria parasite. Biol Cell. 2021;113(2):79–94. https://doi.org/10.1111/boc.202000039.
Article
CAS
PubMed
Google Scholar
Wang M, An Y, Gao L, Dong S, Zhou X, Feng Y, Wang P, Dimopoulos G, Tang H, Wang J. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep. 2021;35(3): 108992. https://doi.org/10.1016/j.celrep.2021.108992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bando H, Okado K, Guelbeogo WM, Badolo A, Aonuma H, Nelson B, Fukumoto S, Xuan X, Sagnon N, Kanuka H. Intra-specific diversity of Serratia marcescens in Anopheles Mosquito midgut defines plasmodium transmission capacity. Sci Rep. 2013;3(1):1641. https://doi.org/10.1038/srep01641.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaw WR, Catteruccia F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat Microbiol. 2019;4(1):20–34. https://doi.org/10.1038/s41564-018-0214-7.
Article
CAS
PubMed
Google Scholar
Gendrin M, Rodgers FH, Yerbanga RS, Ouédraogo JB, Basáñez M-G, Cohuet A, Christophides GK. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nat Commun. 2015;6(1):5921. https://doi.org/10.1038/ncomms6921.
Article
PubMed
Google Scholar
Gendrin M, Yerbanga RS, Ouedraogo JB, Lefèvre T, Cohuet A, Christophides GK. Differential effects of azithromycin, doxycycline, and cotrimoxazole in ingested blood on the vectorial capacity of malaria mosquitoes. Open Forum Infect Dis. 2016;3(2):ofw074. https://doi.org/10.1093/ofid/ofw074.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gall CA, Reif KE, Scoles GA, Mason KL, Mousel M, Noh SM, Brayton KA. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 2016;10(8):1846–55. https://doi.org/10.1038/ismej.2015.266.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narasimhan S, Swei A, Abouneameh S, Pal U, Pedra JHF, Fikrig E. Grappling with the tick microbiome. Trends Parasitol. 2021;37(8):722–33. https://doi.org/10.1016/j.pt.2021.04.004.
Article
CAS
PubMed
Google Scholar
Mateos-Hernández L, Obregón D, Maye J, Borneres J, Versille N, de la Fuente J, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccines. 2020;8(4):702. https://doi.org/10.3390/vaccines8040702.
Article
CAS
PubMed Central
Google Scholar
Mateos-Hernández L, Obregón D, Wu-Chuang A, Maye J, Bornères J, Versillé N, de la Fuente J, Díaz-Sánchez S, Bermúdez-Humarán LG, Torres-Maravilla E, Estrada-Peña A, Hodžić A, Šimo L, Cabezas-Cruz A. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front Immunol. 2021;12: 704621. https://doi.org/10.3389/fimmu.2021.704621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu-Chuang A, Obregon D, Mateos-Hernández L, Cabezas-Cruz A. Anti-tick microbiota vaccines: how can this actually work? Biologia. 2021. https://doi.org/10.1007/s11756-021-00818-6.
Article
Google Scholar
Narasimhan S, Rajeevan N, Liu L, Zhao YO, Heisig J, Pan J, Eppler-Epstein R, DePonte K, Fish D, Fikrig E. Gut Microbiota of the Tick Vector Ixodes scapularis Modulate colonization of the lyme disease spirochete. Cell Host Microbe. 2014;15(1):58–71. https://doi.org/10.1016/j.chom.2013.12.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narasimhan S, Schuijt TJ, Abraham NM, Rajeevan N, Coumou J, Graham M, Robson A, Wu M-J, Daffre S, Hovius JW, Fikrig E. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi Colonization. Nat Commun. 2017;8(1):184. https://doi.org/10.1038/s41467-017-00208-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, Ansari JM, Jefferson KK, Cava F, Jacobs-Wagner C, Fikrig E. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci USA. 2017;114(5):E781–90. https://doi.org/10.1073/pnas.1613422114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heisig M, Abraham NM, Liu L, Neelakanta G, Mattessich S, Sultana H, Shang Z, Ansari JM, Killiam C, Walker W, Cooley L, Flavell RA, Agaisse H, Fikrig E. Antivirulence properties of an antifreeze protein. Cell Rep. 2014;9(2):417–24. https://doi.org/10.1016/j.celrep.2014.09.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brinkerhoff RJ, Clark C, Ocasio K, Gauthier DT, Hynes WL. Factors Affecting the Microbiome of Ixodes scapularis and Amblyomma americanum. PLoS ONE. 2020;15(5): e0232398. https://doi.org/10.1371/journal.pone.0232398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chauhan G, McClure J, Hekman J, Marsh PW, Bailey JA, Daniels RF, Genereux DP, Karlsson EK. Combining citizen science and genomics to investigate tick, pathogen, and commensal microbiome at single-tick resolution. Front Genet. 2020;10:1322. https://doi.org/10.3389/fgene.2019.01322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang W, Wang S, Jacobs-Lorena M. Use of microbiota to fight mosquito-borne disease. Front Genet. 2020;11:196. https://doi.org/10.3389/fgene.2020.00196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tchioffo MT, Boissière A, Churcher TS, Abate L, Gimonneau G, Nsango SE, Awono-Ambéné PH, Christen R, Berry A, Morlais I. Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria. PLoS ONE. 2013;8(12): e81663. https://doi.org/10.1371/journal.pone.0081663.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe. 2011;10(4):307–10. https://doi.org/10.1016/j.chom.2011.09.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, Liu H, Liu Q, Zhao T, Chen X, Zhou H, Wang P, Cheng G. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe. 2019;25(1):101-112.e5. https://doi.org/10.1016/j.chom.2018.11.004.
Article
CAS
PubMed
Google Scholar
Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5(5): e1000423. https://doi.org/10.1371/journal.ppat.1000423.
Article
PubMed
PubMed Central
Google Scholar
Meister S, Agianian B, Turlure F, Relógio A, Morlais I, Kafatos FC, Christophides GK. Anopheles gambiae PGRPLC-mediated defense against bacteria modulates infections with malaria parasites. PLoS Pathog. 2009;5(8): e1000542. https://doi.org/10.1371/journal.ppat.1000542.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garver LS, Dong Y, Dimopoulos G. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species. PLoS Pathog. 2009;5(3): e1000335. https://doi.org/10.1371/journal.ppat.1000335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azambuja P, Feder D, Garcia ES. Isolation of serratia marcescens in the midgut of rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the Vector. Exp Parasitol. 2004;107(1–2):89–96. https://doi.org/10.1016/j.exppara.2004.04.007.
Article
CAS
PubMed
Google Scholar
Fieck A, Hurwitz I, Kang AS, Durvasula R. Trypanosoma Cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Exp Parasitol. 2010;125(4):342–7. https://doi.org/10.1016/j.exppara.2010.02.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frentiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O’Neill SL. Limited h Aedes aegypti mosquitoes infected with Wolbachia. PLoS Negl Trop Dis. 2014;8(2): e2688. https://doi.org/10.1371/journal.pntd.0002688.
Article
PubMed
PubMed Central
Google Scholar
Schmidt TL, Barton NH, Rašić G, Turley AP, Montgomery BL, Iturbe-Ormaetxe I, Cook PE, Ryan PA, Ritchie SA, Hoffmann AA, O’Neill SL, Turelli M. Local Introduction and Heterogeneous Spatial Spread of Dengue-Suppressing Wolbachia through an Urban Population of Aedes aegypti. PLoS Biol. 2017;15(5): e2001894. https://doi.org/10.1371/journal.pbio.2001894.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beier MS, Pumpuni CB, Beier JC, Davis JR. Effects of para-aminobenzoic acid, insulin, and gentamicin on Plasmodium falciparum Development in Anopheline Mosquitoes (Diptera: Culicidae). J Med Entomol. 1994;31(4):561–5. https://doi.org/10.1093/jmedent/31.4.561.
Article
CAS
PubMed
Google Scholar
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O’Neill SL. A Wolbachia Symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell. 2009;139(7):1268–78. https://doi.org/10.1016/j.cell.2009.11.042.
Article
PubMed
Google Scholar
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O’Neill SL, Hoffmann AA. The WMel Wolbachia Strain Blocks Dengue and Invades Caged Aedes aegypti Populations. Nature. 2011;476(7361):450–3. https://doi.org/10.1038/nature10355.
Article
CAS
PubMed
Google Scholar
Landmann F, Cossart P, Craig RR, Sansonetti P. The Wolbachia Endosymbionts. Am Soc Microbiol. 2019;7:2. https://doi.org/10.1128/microbiolspec.BAI-0018-2019.
Article
Google Scholar
Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating zika virus isolates in Brazilian Aedes aegypti Mosquitoes. Cell Host Microbe. 2016;19(6):771–4. https://doi.org/10.1016/j.chom.2016.04.021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ackerman S, Clare FB, McGill TW, Sonenshine DE. Passage of host serum components, including antibody, across the digestive tract of Dermacentor variabilis (Say). J Parasitol. 1981;67(5):737. https://doi.org/10.2307/3280459.
Article
CAS
PubMed
Google Scholar
Ben-Yakir D, Fox CJ, Homer JT, Barker RW. Quantification of host immunoglobulin in the hemolymph of ticks. J Parasitol. 1987;73(3):669. https://doi.org/10.2307/3282157.
Article
CAS
PubMed
Google Scholar
Wang H, Nuttall PA. Excretion of host immunoglobulin in tick saliva and detection of igg-binding proteins in tick haemolymph and salivary glands. Parasitology. 1994;109(4):525–30. https://doi.org/10.1017/S0031182000080781.
Article
CAS
PubMed
Google Scholar
Willadsen P. Novel vaccines for ectoparasites. Vet Parasitol. 1997;71(2–3):209–22. https://doi.org/10.1016/S0304-4017(97)00028-9.
Article
CAS
PubMed
Google Scholar
Rathinavelu S, Broadwater A, de Silva AM. Does Host Complement Kill Borrelia burgdorferi within Ticks? Infect Immun. 2003;71(2):822–9. https://doi.org/10.1128/IAI.71.2.822-829.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galay RL, Matsuo T, Hernandez EP, Talactac MR, Kusakisako K, Umemiya-Shirafuji R, Mochizuki M, Fujisaki K, Tanaka T. Immunofluorescent detection in the ovary of host antibodies against a secretory ferritin injected into Female Haemaphysalis longicornis Ticks. Parasitol Int. 2018;67(2):119–22. https://doi.org/10.1016/j.parint.2017.10.006.
Article
CAS
PubMed
Google Scholar
Vaughan JA. Kinetics of ingested host immunoglobulin g in hemolymph and whole body homogenates during nymphal development of Dermacentor variabilis and Ixodes scapularis Ticks (Acari: Ixodidae). Exp Appl Acarol. 2002;27(4):329–40. https://doi.org/10.1023/A:1023347930746.
Article
CAS
PubMed
Google Scholar
Chinzei Y, Minoura H. Host Immunoglobulin G Titre and Antibody Activity in Haemolymph of the Tick Ornithodoros moubata. Med Vet Entomol. 1987;1(4):409–16. https://doi.org/10.1111/j.1365-2915.1987.tb00371.x.
Article
CAS
PubMed
Google Scholar
Hatfield PR. Detection and localization of antibody ingested with a mosquito bloodmeal. Med Vet Entomol. 1988;2(4):339–45. https://doi.org/10.1111/j.1365-2915.1988.tb00206.x.
Article
CAS
PubMed
Google Scholar
Lackie AM, Gavin S. Uptake and persistence of ingested antibody in the mosquito Anopheles stephensi. Med Vet Entomol. 1989;3(3):225–30. https://doi.org/10.1111/j.1365-2915.1989.tb00220.x.
Article
CAS
PubMed
Google Scholar
Tesh RB, Chen W-R, Catuccio D. Survival of Albumin, IgG, IgM, and Complement (C3) in human blood after ingestion by Aedes albopictus and Phlebotomus papatasi. Am J Trop Med Hyg. 1988;39(1):127–30. https://doi.org/10.4269/ajtmh.1988.39.127.
Article
CAS
PubMed
Google Scholar
Saab NAA, Nascimento AAS, Queiroz DC, da Cunha IGM, Filho AAP, D’Ávila Pessoa GC, Koerich LB, Pereira MH, SantAnna MRV, Araújo RN, Gontijo NF. How Lutzomyia longipalpis Deals with the Complement System Present in the Ingested Blood: The Role of Soluble Inhibitors and the Adsorption of Factor H by Midgut. J Insect Physiol. 2020;120:103992. https://doi.org/10.1016/j.jinsphys.2019.103992.
Article
CAS
PubMed
Google Scholar
Nogge G, Giannetti M. Specific Antibodies: A Potential Insecticide. Science. 1980;209(4460):1028–9. https://doi.org/10.1126/science.7403865.
Article
CAS
PubMed
Google Scholar
Vaughan JA, Azad AF. Passage of host immunoglobulin G from blood meal into hemolymph of selected mosquito species (Diptera: Culicidae). J Med Entomol. 1988;25(6):472–4. https://doi.org/10.1093/jmedent/25.6.472.
Article
CAS
PubMed
Google Scholar
Margos G, Navarette S, Butcher G, Davies A, Willers C, Sinden RE, Lachmann PJ. Interaction between Host Complement and Mosquito-Midgut-Stage Plasmodium berghei. Infect Immun. 2001;69(8):5064–71. https://doi.org/10.1128/IAI.69.8.5064-5071.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gough JM, Kemp DH. Localization of a Low Abundance Membrane Protein (Bm86) on the Gut Cells of the Cattle Tick Boophilus microplus by Immunogold Labeling. J Parasitol. 1993;79(6):900–7.
Article
CAS
PubMed
Google Scholar
de la Fuente J, Moreno-Cid JA, Canales M, Villar M, de la Lastra JMP, Kocan KM, Galindo RC, Almazán C, Blouin EF. Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet Parasitol. 2011;181(1):17–22. https://doi.org/10.1016/j.vetpar.2011.04.018.
Article
CAS
PubMed
Google Scholar
Rodríguez-Mallon A, Encinosa PE, Méndez-Pérez L, Bello Y, Rodríguez Fernández R, Garay H, Cabrales A, Méndez L, Borroto C, Estrada MP. High Efficacy of a 20 amino Acid Peptide of the Acidic Ribosomal Protein P0 against the Cattle Tick. Rhipicephalus Microplus Ticks Tick-borne Dis. 2015;6(4):530–7. https://doi.org/10.1016/j.ttbdis.2015.04.007.
Article
PubMed
Google Scholar
Rodríguez-Mallon A, Fernández E, Encinosa PE, Bello Y, Méndez-Pérez L, Ruiz LC, Pérez D, González M, Garay H, Reyes O, Méndez L, Estrada MP. A novel tick antigen shows high vaccine efficacy against the dog tick Rhipicephalus sanguineus. Vaccine. 2012;30(10):1782–9. https://doi.org/10.1016/j.vaccine.2012.01.011.
Article
CAS
PubMed
Google Scholar
Meyers JI, Gray M, Foy BD. Mosquitocidal Properties of IgG Targeting the Glutamate-Gated Chloride Channel in Three Mosquito Disease Vectors (Diptera: Culicidae). J Exp Biol. 2015;218(10):1487–95. https://doi.org/10.1242/jeb.118596.
Article
PubMed
PubMed Central
Google Scholar
Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, de la Fuente J. Functional evolution of subolesin/akirin. Front Physiol. 2018;9:1612. https://doi.org/10.3389/fphys.2018.01612.
Article
PubMed
PubMed Central
Google Scholar
Kumar M, Kaur S, Kariu T, Yang X, Bossis I, Anderson JF, Pal U. Borrelia burgdorferi BBA52 is a potential target for transmission blocking lyme disease vaccine. Vaccine. 2011;29(48):9012–9. https://doi.org/10.1016/j.vaccine.2011.09.035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tachibana M, Wu Y, Iriko H, Muratova O, MacDonald NJ, Sattabongkot J, Takeo S, Otsuki H, Torii M, Tsuboi T. N-Terminal Prodomain of Pfs230 synthesized using a cell-free system is sufficient to induce complement-dependent malaria transmission-blocking activity. Clin Vaccine Immunol. 2011;18(8):1343–50. https://doi.org/10.1128/CVI.05104-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chowdhury DR, Angov E, Kariuki T, Kumar N. A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli. PLoS ONE. 2009;4(7): e6352. https://doi.org/10.1371/journal.pone.0006352.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapulu MC, Da DF, Miura K, Li Y, Blagborough AM, Churcher TS, Nikolaeva D, Williams AR, Goodman AL, Sangare I, Turner AV, Cottingham MG, Nicosia A, Straschil U, Tsuboi T, Gilbert SC, Long CA, Sinden RE, Draper SJ, Hill AVS, Cohuet A, Biswas S. Comparative assessment of transmission-blocking vaccine candidates against Plasmodium falciparum. Sci Rep. 2015;5(1):11193. https://doi.org/10.1038/srep11193.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Silva AM, Telford SR, Brunet LR, Barthold SW, Fikrig E. Borrelia Burgdorferi OspA is an arthropod-specific transmission-blocking lyme disease vaccine. J Exp Med. 1996;183(1):271–5. https://doi.org/10.1084/jem.183.1.271.
Article
PubMed
Google Scholar
Gipson CL, de Silva AM. Interactions of OspA Monoclonal Antibody C378 with Borrelia burgdorferi within Ticks. Infect Immun. 2005;73(3):1644–7. https://doi.org/10.1128/IAI.73.3.1644-1647.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sinden RE. Developing transmission-blocking strategies for malaria control. PLoS Pathog. 2017;13(7): e1006336. https://doi.org/10.1371/journal.ppat.1006336.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matuschewski K, Mueller A-K. Vaccines against malaria - an update: anti-malaria vaccine development. FEBS J. 2007;274(18):4680–7. https://doi.org/10.1111/j.1742-4658.2007.05998.x.
Article
CAS
PubMed
Google Scholar
Vaughan JA, Do Rosario V, Leland P, Adjepong A, Light J, Woollett GR, Hollingdale MR, Azad AF. Plasmodium falciparum: ingested anti-sporozoite antibodies affect sporogony in Anopheles stephensi mosquitoes. Exp Parasitol. 1988;66(2):171–82. https://doi.org/10.1016/0014-4894(88)90088-4.
Article
CAS
PubMed
Google Scholar
Beier JC, Oster CN, Koros JK, Onyango FK, Githeko AK, Rowton E, Koech DK, Roberts CR. Effect of human circumsporozoite antibodies in Plasmodium-infected Anopheles (Diptera: Culicidae). J Med Entomol. 1989;26(6):547–53. https://doi.org/10.1093/jmedent/26.6.547.
Article
CAS
PubMed
Google Scholar
Carter R, Graves PM, Quakyi IA, Good MF. Restricted or absent immune responses in human populations to Plasmodium falciparum Gamete antigens that are targets of malaria transmission-blocking antibodies. J Exp Med. 1989;169(1):135–47. https://doi.org/10.1084/jem.169.1.135.
Article
CAS
PubMed
Google Scholar
Ben-Yakir D. Growth retardation of Rhodnius prolixus symbionts by immunizing host against Nocardia (Rhodococcus) Rhodnii. J Insect Physiol. 1987;33(6):379–83. https://doi.org/10.1016/0022-1910(87)90015-1.
Article
Google Scholar
Nogge G. Aposymbiotic Tsetse Flies, Glossina morsitans morsitans obtained by feeding on rabbits immunized specifically with symbionts. J Insect Physiol. 1978;24(4):299–304. https://doi.org/10.1016/0022-1910(78)90026-4.
Article
CAS
PubMed
Google Scholar
Noden BH, Vaughan JA, Pumpuni CB, Beier JC. Mosquito Ingestion of Antibodies against Mosquito Midgut Microbiota Improves Conversion of Ookinetes to Oocysts for Plasmodium falciparum, but Not P. yoelii. Parasitol Int. 2011;60(4):440–6. https://doi.org/10.1016/j.parint.2011.07.007.
Article
PubMed
PubMed Central
Google Scholar
Salcedo-Porras N, Umaña-Diaz C, de Oliveira R, Lowenberger C. The role of bacterial symbionts in triatomines: an evolutionary perspective. Microorganisms. 2020;8(9):1438. https://doi.org/10.3390/microorganisms8091438.
Article
CAS
PubMed Central
Google Scholar
Kaaya GP, Alemu P. Further observations on survival and fertility of Glossina morsitans morsitans maintained on immunized rabbits. Int J Trop Insect Sci. 1984;5(05):443–6. https://doi.org/10.1017/S1742758400008808.
Article
Google Scholar
Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc R Soc Lond B. 2003;270(1518):921–8. https://doi.org/10.1098/rspb.2002.2319.
Article
CAS
Google Scholar
Steven B, Hyde J, LaReau JC, Brackney DE. The axenic and gnotobiotic mosquito: emerging models for microbiome host interactions. Front Microbiol. 2021;12: 714222. https://doi.org/10.3389/fmicb.2021.714222.
Article
PubMed
PubMed Central
Google Scholar