Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10:e0004349.
PubMed
PubMed Central
Google Scholar
Maia C, Dantas-Torres F, Campino L. Parasite biology: the reservoir hosts. In: Bruschi F, Gradoni L, editors. The Leishmaniases: old neglected tropical diseases. Berlin: Springer; 2018. p. 79–106.
Google Scholar
Aoun K, Jeddi F, Amri F, Ghrab J, Bouratbine A. Current epidemiological data on visceral leishmaniasis in Tunisia. Med Mal Infect. 2009;39:775–9.
CAS
PubMed
Google Scholar
Fathallah-Mili A, Saghrouni F, BenSaid Z, Saadi-BenAoun Y, Guizani I, BenSaid M. Retrospective analysis of leishmaniasis in Central Tunisia: an update on emerging epidemiological trends. In: Rodriguez-Morales A, editor. Current topics in tropical medicine. New York: InTech; 2012. p. 227–52.
Google Scholar
Chaara D, Bañuls AL, Haouas N, Talignani L, Lami P, Mezhoud H, et al. Comparison of Leishmania killicki (syn. L. tropica) and Leishmania tropica population structure in Maghreb by microsatellite typing. PLoSNegl Trop Dis. 2015;9:e0004204.
Google Scholar
Jaouadi K, Haouas N, Chaara D, Gorcii M, Chargui N, Augot D, et al. First detection of Leishmania killicki (Kinetoplastida, Trypanosomatidae) in Ctenodactylusgundi (Rodentia, Ctenodactylidae), a possible reservoir of human cutaneous leishmaniasis in Tunisia. Parasit Vectors. 2011;4:159.
PubMed
PubMed Central
Google Scholar
Pourmohammadi B, Mohammadi-Azni S. Molecular detection of Leishmania major in Hemiechinus auritus, a potential reservoir of zoonotic cutaneous leishmaniasis in Damghan. Iran J Arthropod Borne Dis. 2019;13:334–43.
Google Scholar
Tomás-Pérez M, Khaldi M, Riera C, Mozo-León D, Ribas A, Hide M, et al. First report of natural infection in hedgehogs with Leishmania major, a possible reservoir of zoonotic cutaneous leishmaniasis in Algeria. Acta Trop. 2014;135:44–9.
PubMed
Google Scholar
Chemkhi J, Souguir H, Ali IB, Driss M, Guizani I, Guerbouj S. Natural infection of Algerian hedgehog, Atelerix algirus (Lereboullet 1842) with Leishmania parasites in Tunisia. Acta Trop. 2015;150:42–51.
PubMed
Google Scholar
Souguir-Omrani H, Chemkhi J, Fathallah-Mili A, Saadi-BenAoun Y, BelHadjAli I, Guizani I, et al. Paraechinus aethiopicus (Ehrenberg 1832) and Atelerix algirus (Lereboullet 1842) hedgehogs: possible reservoirs of endemic leishmaniases in Tunisia. Infect Genet Evol. 2018;63:219–30.
PubMed
Google Scholar
Schönian G, Nasereddin A, Dinse N, Schweynoch C, Schallig HDFH, Presber W, et al. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis. 2003;47:349–58.
PubMed
Google Scholar
Słomka M, Sobalska-Kwapis M, Wachulec M, Bartosz G, Strapagiel D. High Resolution Melting (HRM) for high-throughput genotyping—limitations and caveats in practical case studies. Int J Mol Sci. 2017;18:2316.
PubMed Central
Google Scholar
Tamburro M, Ripabelli G. High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: a comprehensive review of the literature. Ann Ig. 2017;29:293–316.
CAS
PubMed
Google Scholar
Hernández C, Alvarez C, González C, Ayala MS, León CM, Ramírez JD. Identification of six New World Leishmania species through the implementation of a High-Resolution Melting (HRM) genotyping assay. Parasit Vectors. 2014;7:501.
PubMed
PubMed Central
Google Scholar
Zampieri RA, Laranjeira-Silva MF, Muxel SM, de Lima ACS, Shaw JJ, Floeter-Winter LM. High Resolution Melting analysis targeting hsp70 as a fast and efficient method for the discrimination of Leishmania species. PLoS Negl Trop Dis. 2016;10:e0004485.
PubMed
PubMed Central
Google Scholar
Talmi-Frank D, Nasereddin A, Schnur LF, Schönian G, Töz SO, Jaffe CL, et al. Detection and identification of old world Leishmania by high resolution melt analysis. PLoSNegl Trop Dis. 2010;4:e581.
Google Scholar
Nasereddin A, Jaffe CL. Rapid diagnosis of Old World Leishmaniasis by high-resolution melting analysis of the 7SL RNA gene. J Clin Microbiol. 2010;48:2240–2.
CAS
PubMed
PubMed Central
Google Scholar
Kuang Z, Zhang C, Pang H, Ma Y. A rapid high-resolution melting method for differentiation of Leishmania species targeting lack gene. Acta Trop. 2018;178:103–6.
CAS
PubMed
Google Scholar
Corbet GB. The family Erinaceidae: a synthesis of its taxonomy, phylogeny, ecology and zoogeography. Mammal Rev. 1988;18:117–72.
Google Scholar
El-Farhati H, Jaziri B, Hizem MW, Nouira S. Distribution, bioclimatic niche and sympatry of two erinaceidae in Tunisia. Afr J Ecol. 2019;00:1–18.
Google Scholar
Guerbouj S, Djilani F, Bettaieb J, Lambson B, Diouani MF, Ben Salah A, et al. Evaluation of a gp63-PCR based assay as a molecular diagnosis tool in canine leishmaniasis in Tunisia. PLoS ONE. 2014;9:e105419.
PubMed
PubMed Central
Google Scholar
Ashford DA, Bozza M, Freire M, Miranda JC, Sherlock I, Eulalio C, et al. Comparison of the polymerase chain reaction and serology for the detection of canine visceral leishmaniasis. Am J Trop Med Hyg. 1995;53:251–5.
CAS
PubMed
Google Scholar
Costa JM, Garcia-Hermoso D, Olivi M, Cabaret O, Farrugia C, Lecellier G, et al. Genotyping of Candida albicans using length fragment and high-resolution melting analyses together with minisequencing of a polymorphic microsatellite locus. J MicrobiolMethods. 2010;80:306–9.
CAS
Google Scholar
Chibssa TR, Settypalli TBK, Berguido FJ, Grabherr R, Loitsch A, Tuppurainen E, et al. An HRM Assay to differentiate sheeppox virus vaccine strains from sheeppox virus field isolates and other capripoxvirus species. SciRep. 2019;9:6646.
Google Scholar
Erster O, Stram R, Menasherow S, Rubistein-Giuni M, Sharir B, Kchinich E, et al. High-resolution melting (HRM) for genotyping bovine ephemeral fever virus (BEFV). Virus Res. 2017;229:1–8.
CAS
PubMed
Google Scholar
Njage PMK, Buys E. A high resolution DNA melting curve analysis for the rapid and efficient molecular diagnostics of extended spectrum β-Lactamase Determinants from foodborne Escherichia coli. Microorganisms. 2020;8:E90.
PubMed
Google Scholar
Arefzadeh S, Azimi T, Nasiri MJ, Nikpor Z, Dabiri H, Doustdar F, et al. High-resolution melt curve analysis for rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a single-centre study in Iran. New Microbes New Infect. 2020;35:100665.
CAS
PubMed
PubMed Central
Google Scholar
Gopaul KK, Sells J, Lee R, Beckstrom-Sternberg SM, Foster JT, Whatmore AM. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species. BMC Res Notes. 2014;7:903.
PubMed
PubMed Central
Google Scholar
Wang J, Liu A, Zhang S, Gao S, Rashid M, Li Y, et al. High resolution melting analysis of the 18S rRNA gene for the rapid diagnosis of bovine babesiosis. Parasit Vectors. 2019;12:523.
PubMed
PubMed Central
Google Scholar
Kamaliddin C, Joste V, Hubert V, Kendjo E, Argy N, Houze S. Evaluation of PCR to monitor Plasmodium falciparum treatment efficacy in a nonendemicity setting. J ClinMicrobiol. 2019;58:e01080-e1119.
Google Scholar
Wang J, Yang J, Gao S, Liu A, Rashid M, Li Y, et al. Rapid detection and differentiation of Theileria annulata, T. orientalis and T. sinensis using high-resolution melting analysis. Ticks Tick Borne Dis. 2020;11:101312.
PubMed
Google Scholar
Mohammad Rahimi H, Pourhosseingholi MA, Yadegar A, Mirjalali H, Zali MR. High-resolution melt curve analysis: A real-time based multipurpose approach for diagnosis and epidemiological investigations of parasitic infections. Comp Immunol Microbiol Infect Dis. 2019;67:101364.
PubMed
Google Scholar
Hosseini-Safa A, Mohebali M, Hajjaran H, Akhoundi B, Zarei Z, Arzamani K, et al. High resolution melting analysis as an accurate method for identifying Leishmania infantum in canine serum samples. J Vector Borne Dis. 2018;55:315–20.
CAS
PubMed
Google Scholar
Ahuja K, Vats A, Beg MA, Kariyawasam KKGDUL, Chaudhury A, Chatterjee M, et al. High resolution melting based method for rapid discriminatory diagnosis of co-infecting Leptomonas seymouri in Leishmania donovani-induced leishmaniasis. Parasitol Int. 2019;75:102047.
PubMed
PubMed Central
Google Scholar
Rojas-Jaimes J, Rojas-Palomino N, Pence J, Lescano AG. Leishmania species in biopsies of patients with different clinical manifestations identified by high resolution melting and nested PCR in an Endemic district in Peru. Parasite Epidemiol Control. 2019;4:e00095.
PubMed
PubMed Central
Google Scholar
Fichet-Calvet E, Jomâa I, Ben Ismail R, Ashford RW. Leishmania major infection in the fat sand rat Psammomys obesus in Tunisia: interaction of host and parasite populations. Ann Trop Med Parasitol. 2003;97:593–603.
CAS
PubMed
Google Scholar
Ghawar W, Snoussi MA, Hamida NBH, Boukthir A, Yazidi R, Chaâbane S, et al. First report of natural infection of least weasel (Mustelanivalis Linnaeus, 1776) with Leishmania major in Tunisia. Vector Borne Zoonotic Dis. 2011;11:1507–9.
PubMed
Google Scholar
Ghawar W, Toumi A, Snoussi M-A, Chlif S, Zâatour A, Boukthir A, et al. Leishmania major infection among Psammomys obesus and Meriones shawi: reservoirs of zoonotic cutaneous leishmaniasis in SidiBouzid (Central Tunisia). Vector Borne Zoonotic Dis. 2011;11:1561–8.
PubMed
PubMed Central
Google Scholar
Bousslimi N, Ben-Ayed S, Ben-Abda I, Aoun K, Bouratbine A. Natural infection of North African gundi (Ctenodactylusgundi) by Leishmania tropica in the focus of cutaneous leishmaniasis, Southeast Tunisia. Am J Trop Med Hyg. 2012;86:962–5.
PubMed
PubMed Central
Google Scholar
Miró G, Cardoso L, Pennisi MG, Oliva G, Baneth G. Canine leishmaniosis—new concepts and insights on an expanding zoonosis: part two. Trends Parasitol. 2008;24:371–7.
PubMed
Google Scholar
Santos FJA, Nascimento LCS, Silva WB, Oliveira LP, Santos WS, Aguiar DCF, et al. First report of canine infection by Leishmania (Viannia) guyanensis in the Brazilian Amazon. Int J Environ Res Public Health. 2020;17:8488.
PubMed Central
Google Scholar
de Castro Ferreira E, Pereira AAS, Silveira M, Margonari C, Marcon GEB, de Oliveira França A, et al. Leishmania (V.) braziliensis infecting bats from Pantanal wetland, Brazil: first records for Platyrrhinuslineatus and Artibeusplanirostris. Acta Trop. 2017;172:217–22.
PubMed
Google Scholar
Castro LS, Dorval MEC, Matheus LMD, Bednaski AV, Facco GG, Silveira M, et al. Leishmania presence in bats in areas endemic for leishmaniasis in central-west Brazil. Int J Parasitol Parasites Wild l. 2020;11:261–7.
Google Scholar
Lemma W, Bizuneh A, Tekie H, Belay H, Wondimu H, Kassahun A, et al. Preliminary study on investigation of zoonotic visceral leishmaniasis in endemic foci of Ethiopia by detecting Leishmania infections in rodents. Asian Pac J Trop Med. 2017;10:418–22.
PubMed
Google Scholar
Escobar TA, Dowich G, Dos Santos TP, Zuravski L, Duarte CA, Lübeck I, et al. Assessment of Leishmania infantum infection in equine populations in a canine visceral leishmaniosis transmission area. BMC VetRes. 2019;15:381.
Google Scholar
Rocha AVVO, Moreno BFS, Cabral AD, Louzeiro NM, Miranda LM, dos Santos VMB, et al. Diagnosis and epidemiology of Leishmania infantum in domestic cats in an endemic area of the Amazon region, Brazil. Vet Parasitol. 2019;273:80–5.
CAS
PubMed
Google Scholar
Echchakery M, Chicharro C, Boussaa S, Nieto J, Carrillo E, Sheila O, et al. Molecular detection of Leishmania infantum and Leishmania tropica in rodent species from endemic cutaneous leishmaniasis areas in Morocco. Parasit Vectors. 2017;10:454.
PubMed
PubMed Central
Google Scholar
Tsukayama P, Núñez JH, De Los Santos M, Soberón V, Lucas CM, Matlashewski G, et al. A FRET-based real-time PCR assay to identify the main causal agents of New World tegumentary leishmaniasis. PLoS Negl Trop Dis. 2013;7:e1956.
CAS
PubMed
PubMed Central
Google Scholar
Tse MY, Ashbury JE, Zwingerman N, King WD, Taylor SA, Pang SC. A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC Res Notes. 2011;4:565.
CAS
PubMed
PubMed Central
Google Scholar
Wu WM, Tsai HJ, Pang JHS, Wang HS, Hong HS, Lee YS. Touchdown thermocycling program enables a robust single nucleotide polymorphism typing method based on allele-specific real-time polymerase chain reaction. Anal Biochem. 2005;339:290–6.
CAS
PubMed
Google Scholar
Korbie DJ, Mattick JS. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc. 2008;3:1452–6.
CAS
PubMed
Google Scholar
Müller KE, Zampieri RA, Aoki JI, Muxel SM, Nerland AH, Floeter-Winter LM. Amino acid permease 3 (aap3) coding sequence as a target for Leishmania identification and diagnosis of leishmaniases using high resolution melting analysis. Parasit Vectors. 2018;11:421.
PubMed
PubMed Central
Google Scholar
Flaherty BR, Talundzic E, Barratt J, Kines KJ, Olsen C, Lane M, et al. Restriction enzyme digestion of host DNA enhances universal detection of parasitic pathogens in blood via targeted amplicon deep sequencing. Microbiome. 2018;6:164.
PubMed
PubMed Central
Google Scholar
Reale S, Maxia L, Vitale F, Glorioso NS, Caracappa S, Vesco G. Detection of Leishmania infantum in dogs by PCR with lymph node aspirates and blood. J ClinMicrobiol. 1999;37:2931–5.
CAS
Google Scholar
Spanakos G, Patsoula E, Kremastinou T, Saroglou G, Vakalis N. Development of a PCR-based method for diagnosis of Leishmania in blood samples. Mol Cell Probes. 2002;16:415–20.
CAS
PubMed
Google Scholar
Piarroux R, Fontes M, Perasso R, Gambarelli F, Joblet C, Dumon H, et al. Phylogenetic relationships between Old World Leishmania strains revealed by analysis of a repetitive DNA sequence. Mol Biochem Parasitol. 1995;73:249–52.
CAS
PubMed
Google Scholar
Tordini G, Giaccherini R, Pacenti L, Miracco C, Zazzi M, Zanelli G. Cutaneous leishmaniasis: usefulness of PCR on paraffin-embedded skin biopsies as part of routine investigation. Ann Trop Med Parasitol. 2007;101:745–9.
CAS
PubMed
Google Scholar
Tsakmakidis Ι, Angelopoulou K, Dovas CI, Dokianakis Ε, Tamvakis Α, Symeonidou I, et al. Leishmania infection in rodents in Greece. Trop Med Int Health. 2017;22:1523–32.
CAS
Google Scholar
El Hamouchi A, Daoui O, AitKbaich M, Mhaidi I, El Kacem S, Guizani I, et al. Epidemiological features of a recent zoonotic cutaneous leishmaniasis outbreak in Zagora province, southern Morocco. PLoS Negl Trop Dis. 2019;13:e0007321.
PubMed
PubMed Central
Google Scholar
Tabbabi A. Review of leishmaniasis in the Middle East and North Africa. Afr Health Sci. 2019;19:1329–37.
PubMed
PubMed Central
Google Scholar
Mohebali M, Moradi-Asl E, Rassi Y. Geographic distribution and spatial analysis of Leishmania infantum infection in domestic and wild animal reservoir hosts of zoonotic visceral leishmaniasis in Iran: a systematic review. J Vector Borne Dis. 2018;55:173–83.
CAS
PubMed
Google Scholar
Gao CH, Wang JY, Zhang S, Yang YT, Wang Y. Survey of wild and domestic mammals for infection with Leishmania infantum following an outbreak of desert zoonotic visceral leishmaniasis in Jiashi, People’s Republic of China. PLoS ONE. 2015;10:e0132493.
PubMed
PubMed Central
Google Scholar
Akhoundi M, Mohebali M, Asadi M, Mahmodi MR, Amraei K, Mirzaei A. Molecular characterization of Leishmania spp. in reservoir hosts in endemic foci of zoonotic cutaneous leishmaniasis in Iran. Folia Parasitol (Praha). 2013;60:218–24.
CAS
PubMed
Google Scholar
Akhavan AA, Yaghoobi-Ershadi MR, Khamesipour A, Mirhendi H, Alimohammadian MH, Rassi Y, et al. Dynamics of Leishmania infection rates in Rhombomysopimus (Rodentia: Gerbillinae) population of an endemic focus of zoonotic cutaneous leishmaniasis in Iran. Bull SocPatholExot. 2010;103:84–9.
CAS
Google Scholar
Molina R, Amela C, Nieto J, San-Andrés M, González F, Castillo JA, et al. Infectivity of dogs naturally infected with Leishmania infantum to colonized Phlebotomus perniciosus. Trans R Soc Trop Med Hyg. 1994;88:491–3.
CAS
PubMed
Google Scholar
Michalsky EM, Rocha MF, da Rocha LACVM, França-Silva JC, Pires MQ, Oliveira FS, et al. Infectivity of seropositive dogs, showing different clinical forms of leishmaniasis, to Lutzomyialongipalpis phlebotomine sand flies. Vet Parasitol. 2007;147:67–76.
PubMed
Google Scholar