World Health Organization. Accelerating work to overcome the global impact of neglected tropical diseases: a roadmap for implementation: executive summary. Geneva: World Health Organization; 2012.
Google Scholar
McManus DP, Gray DJ, Zhang W, Yang Y. Diagnosis, treatment, and management of echinococcosis. BMJ. 2012;344: e3866. https://doi.org/10.1136/bmj.e3866.
Article
PubMed
Google Scholar
Food and Agriculture Organization of the United Nations/World Health Organization. Multicriteria-based ranking for risk management of food-borne parasites. Microbiological Risk Assessment Series No. 23. Rome: FAO/WHO; 2014.
Ito A, Nakao M, Lavikainen A, Hoberg E. Cystic echinococcosis: future perspectives of molecular epidemiology. Acta Trop. 2017;165:3–9. https://doi.org/10.1016/j.actatropica.2016.05.013.
Article
CAS
PubMed
Google Scholar
Alvarez Rojas CA, Romig T, Lightowlers MW. Echinococcus granulosus sensu lato genotypes infecting humans—review of current knowledge. Int J Parasitol. 2014;44:9–18. https://doi.org/10.1016/j.ijpara.2013.08.008.
Article
PubMed
Google Scholar
Ito A, Dorjsuren T, Davaasuren A, Yanagida T, Sako Y, Nakaya K, et al. Cystic echinococcoses in Mongolia: molecular identification, serology and risk factors. PLoS Negl Trop Dis. 2014;8: e2937. https://doi.org/10.1371/journal.pntd.0002937.
Article
PubMed
PubMed Central
Google Scholar
Thompson RCA, McManus DP. Aetiology: parasites and life-cycles. In: Eckert J, Gemmell M, Meslin F-X, Pawlowski Z, editors. WHOO/OIE manual on echinococcosis in humans and animals: a public health problem of global concern. Paris: World Organization for Animal Health; 2001.
Google Scholar
Wen H, Vuitton L, Tuxun T, Li J, Vuitton DA, Zhang W, et al. Echinococcosis: advances in the 21st century. Clin Microbiol Rev. 2019. https://doi.org/10.1128/cmr.00075-18.
Article
PubMed
PubMed Central
Google Scholar
Nakao M, Li T, Han X, Ma X, Xiao N, Qiu J, et al. Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences. Int J Parasitol. 2010;40:379–85. https://doi.org/10.1016/j.ijpara.2009.09.006.
Article
CAS
PubMed
Google Scholar
Schneider R, Gollackner B, Schindl M, Tucek G, Auer H. Echinococcus canadensis G7 (pig strain): an underestimated cause of cystic echinococcosis in Austria. Am J Trop Med Hyg. 2010;82:871–4. https://doi.org/10.4269/ajtmh.2010.09-0639.
Article
PubMed
PubMed Central
Google Scholar
Muqaddas H, Mehmood N, Arshad M. Genetic variability and diversity of Echinococcus granulosus sensu lato in human isolates of Pakistan based on cox1 mt-DNA sequences (366bp). Acta Trop. 2020;207: 105470. https://doi.org/10.1016/j.actatropica.2020.105470.
Article
CAS
PubMed
Google Scholar
Laurimae T, Kinkar L, Romig T, Omer RA, Casulli A, Umhang G, et al. The benefits of analysing complete mitochondrial genomes: deep insights into the phylogeny and population structure of Echinococcus granulosus sensu lato genotypes G6 and G7. Infect Genet Evol. 2018;64:85–94. https://doi.org/10.1016/j.meegid.2018.06.016.
Article
CAS
PubMed
Google Scholar
Kinkar L, Laurimae T, Acosta-Jamett G, Andresiuk V, Balkaya I, Casulli A, et al. Global phylogeography and genetic diversity of the zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1. Int J Parasitol. 2018;48:729–42. https://doi.org/10.1016/j.ijpara.2018.03.006.
Article
PubMed
Google Scholar
Bowles J, Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol. 1992;54:165–73. https://doi.org/10.1016/0166-6851(92)90109-w.
Article
CAS
PubMed
Google Scholar
Sharma M, Sehgal R, Fomda BA, Malhotra A, Malla N. Molecular characterization of Echinococcus granulosus cysts in North Indian patients: identification of G1, G3, G5 and G6 genotypes. PLoS Negl Trop Dis. 2013;7: e2262. https://doi.org/10.1371/journal.pntd.0002262.
Article
PubMed
PubMed Central
Google Scholar
Zhang LH, Chai JJ, Jiao W, Osman Y, McManus DP. Mitochondrial genomic markers confirm the presence of the camel strain (G6 genotype) of Echinococcus granulosus in north-western China. Parasitology. 1998;116:29–33. https://doi.org/10.1017/s0031182097001881.
Article
CAS
PubMed
Google Scholar
Bart JM, Abdukader M, Zhang YL, Lin RY, Wang YH, Nakao M, et al. Genotyping of human cystic echinococcosis in Xinjiang, PR China. Parasitology. 2006;133:571–9. https://doi.org/10.1017/s0031182006000734.
Article
CAS
PubMed
Google Scholar
Zhang T, Yang D, Zeng Z, Zhao W, Liu A, Piao D, et al. Genetic characterization of human-derived hydatid cysts of Echinococcus granulosus sensu lato in Heilongjiang Province and the first report of G7 genotype of E. canadensis in humans in China. PLoS ONE. 2014;9: e109059. https://doi.org/10.1371/journal.pone.0109059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali V, Martinez E, Duran P, Seláez MA, Barragan M, Nogales P, et al. Echinococcus granulosus sensu stricto, Echinococcus ortleppi; and E. intermedius (G7) are present in Bolivia. Parasitology. 2020;147:949–56. https://doi.org/10.1017/s0031182020000529.
Article
CAS
PubMed
Google Scholar
Lymbery AJ. Phylogenetic pattern, evolutionary processes and species delimitation in the genus Echinococcus. Adv Parasitol. 2017;95:111–45. https://doi.org/10.1016/bs.apar.2016.07.002.
Article
CAS
PubMed
Google Scholar
Torgerson PR, Keller K, Magnotta M, Ragland N. The global burden of alveolar echinococcosis. PLoS Negl Trop Dis. 2010;4: e722. https://doi.org/10.1371/journal.pntd.0000722.
Article
PubMed
PubMed Central
Google Scholar
Budke CM, Deplazes P, Torgerson PR. Global socioeconomic impact of cystic echinococcosis. Emerg Infect Dis. 2006;12:296–303. https://doi.org/10.3201/eid1202.050499.
Article
PubMed
PubMed Central
Google Scholar
Vuitton DA, McManus DP, Rogan MT, Romig T, Gottstein B, Naidich A, et al. International consensus on terminology to be used in the field of echinococcoses. Parasite. 2020;27:41. https://doi.org/10.1051/parasite/2020024.
Article
PubMed
PubMed Central
Google Scholar
Wu W, Wang H, Wang Q, Zhou X, Wang L, Zheng C, et al. A nationwide sampling survey on echinococcosis in China during 2012–2016. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2018;36:1–14.
Google Scholar
Hu D, Song X, Wang N, Zhong X, Wang J, Liu T, et al. Molecular identification of Echinococcus granulosus on the Tibetan Plateau using mitochondrial DNA markers. Genet Mol Res. 2015;14:13915–23. https://doi.org/10.4238/2015.October.29.12.
Article
CAS
PubMed
Google Scholar
Yan N, Nie HM, Jiang ZR, Yang AG, Deng SJ, Guo L, et al. Genetic variability of Echinococcus granulosus from the Tibetan plateau inferred by mitochondrial DNA sequences. Vet Parasitol. 2013;196:179–83. https://doi.org/10.1016/j.vetpar.2013.02.010.
Article
CAS
PubMed
Google Scholar
Ohiolei JA, Xia CY, Li L, Liu JZ, Tang WQ, Wu YT, et al. Genetic variation of Echinococcus spp. in yaks and sheep in the Tibet Autonomous Region of China based on mitochondrial DNA. Parasites Vectors. 2019;12:608. https://doi.org/10.1186/s13071-019-3857-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Quzhen G, Xue CZ, Han S, Chen WQ, Yan XL, et al. Epidemiological survey of echinococcosis in Tibet Autonomous Region of China. Infect Dis Poverty. 2019;8:29. https://doi.org/10.1186/s40249-019-0537-5.
Article
PubMed
PubMed Central
Google Scholar
WHO Informal Working Group on Echinococcosis. Guidelines for treatment of cystic and alveolar echinococcosis in humans. WHO informal working group on Echinococcosis. Bull World Health Organ. 1996;74:231–42.
Google Scholar
Brunetti E, Kern P, Vuitton DA. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Trop. 2010;114:1–16. https://doi.org/10.1016/j.actatropica.2009.11.001.
Article
PubMed
Google Scholar
Boufana B, Umhang G, Qiu J, Chen X, Lahmar S, Boue F, et al. Development of three PCR assays for the differentiation between Echinococcus shiquicus, E. granulosus (G1 genotype), and E. multilocularis DNA in the co-endemic region of Qinghai-Tibet plateau, China. Am J Trop Med Hyg. 2013;88:795–802. https://doi.org/10.4269/ajtmh.12-0331.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
Google Scholar
Mak SST, Gopalakrishnan S, Carøe C, Geng C, Liu S, Sinding MS, et al. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. GigaScience. 2017;6:1–13. https://doi.org/10.1093/gigascience/gix049.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinkar L, Laurimae T, Sharbatkhori M, Mirhendi H, Kia EB, Ponce-Gordo F, et al. New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto. Infect Genet Evol. 2017;52:52–8. https://doi.org/10.1016/j.meegid.2017.04.023.
Article
CAS
PubMed
Google Scholar
Laurimae T, Kinkar L, Andresiuk V, Haag KL, Ponce-Gordo F, Acosta-Jamett G, et al. Genetic diversity and phylogeography of highly zoonotic Echinococcus granulosus genotype G1 in the Americas (Argentina, Brazil, Chile and Mexico) based on 8279bp of mtDNA. Infect Genet Evol. 2016;45:290–6. https://doi.org/10.1016/j.meegid.2016.09.015.
Article
CAS
PubMed
Google Scholar
Kinkar L, Laurimae T, Simsek S, Balkaya I, Casulli A, Manfredi MT, et al. High-resolution phylogeography of zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1 with an emphasis on its distribution in Turkey, Italy and Spain. Parasitology. 2016;143:1790–801. https://doi.org/10.1017/s0031182016001530.
Article
PubMed
Google Scholar
Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45: e18. https://doi.org/10.1093/nar/gkw955.
Article
CAS
PubMed
Google Scholar
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66. https://doi.org/10.1093/nar/gkf436.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symp Ser. 1999; London: Information Retrieval Ltd., c1979-c2000. p. 95–8.
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9. https://doi.org/10.1038/nmeth.4285.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. https://doi.org/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95. https://doi.org/10.1093/molbev/mst024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Knapp J, Nakao M, Yanagida T, Okamoto M, Saarma U, Lavikainen A, et al. Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): an inference from nuclear protein-coding genes. Mol Phylogenet Evol. 2011;61:628–38. https://doi.org/10.1016/j.ympev.2011.07.022.
Article
PubMed
Google Scholar
Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6:1110–6. https://doi.org/10.1111/2041-210X.12410.
Article
Google Scholar
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Excoffier L, Laval G, Schneider S. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online. 2007;1:47–50.
PubMed
PubMed Central
Google Scholar
Fu YX. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997;147:915–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34:3299–302. https://doi.org/10.1093/molbev/msx248.
Article
CAS
PubMed
Google Scholar
Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLoS Comput Biol. 2009;5: e1000520. https://doi.org/10.1371/journal.pcbi.1000520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4: vey016. https://doi.org/10.1093/ve/vey016.
Article
PubMed
PubMed Central
Google Scholar
Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, et al. BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol. 2012;61:170–3. https://doi.org/10.1093/sysbio/syr100.
Article
PubMed
Google Scholar
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67:901–4. https://doi.org/10.1093/sysbio/syy032.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bielejec F, Baele G, Vrancken B, Suchard MA, Rambaut A, Lemey P. Sprea D3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol Biol Evol. 2016;33:2167–9. https://doi.org/10.1093/molbev/msw082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawakubo S, Gao F, Li S, Tan Z, Huang YK, Adkar-Purushothama CR, et al. Genomic analysis of the brassica pathogen turnip mosaic potyvirus reveals its spread along the former trade routes of the Silk Road. Proc Natl Acad Sci USA. 2021. https://doi.org/10.1073/pnas.2021221118.
Article
PubMed
PubMed Central
Google Scholar
WHO Informal Working Group. International classification of ultrasound images in cystic echinococcosis for application in clinical and field epidemiological settings. Acta Trop. 2003;85:253–61.
Article
Google Scholar
Nakao M, Yanagida T, Konyaev S, Lavikainen A, Odnokurtsev VA, Zaikov VA, et al. Mitochondrial phylogeny of the genus Echinococcus (Cestoda: Taeniidae) with emphasis on relationships among Echinococcus canadensis genotypes. Parasitology. 2013;140:1625–36. https://doi.org/10.1017/s0031182013000565.
Article
CAS
PubMed
Google Scholar
Wang N, Xie Y, Liu T, Zhong X, Wang J, Hu D, et al. The complete mitochondrial genome of G3 genotype of Echinococcus granulosus (Cestoda: Taeniidae). Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27:1701–2. https://doi.org/10.3109/19401736.2014.961129.
Article
CAS
PubMed
Google Scholar
Wang Q, Yang L, Wang Y, Zhang GJ, Zhong B, Wu WP, et al. Disease burden of echinococcosis in Tibetan communities—a significant public health issue in an underdeveloped region of western China. Acta Trop. 2020;203: 105283. https://doi.org/10.1016/j.actatropica.2019.105283.
Article
PubMed
Google Scholar
Lv FH, Peng WF, Yang J, Zhao YX, Li WR, Liu MJ, et al. Mitogenomic meta-analysis identifies two phases of migration in the history of eastern Eurasian sheep. Mol Biol Evol. 2015;32:2515–33. https://doi.org/10.1093/molbev/msv139.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakao M, Yokoyama N, Sako Y, Fukunaga M, Ito A. The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion. 2002;1:497–509. https://doi.org/10.1016/s1567-7249(02)00040-5.
Article
CAS
PubMed
Google Scholar
Zhao Y, Shen S, Jin X, Wang W, Li J, Chen W. Cell-free DNA as a diagnostic tool for human echinococcosis. Trends Parasitol. 2021;37:943–6. https://doi.org/10.1016/j.pt.2021.07.006.
Article
CAS
PubMed
Google Scholar
Yang YR, McManus DP, Huang Y, Heath DD. Echinococcus granulosus infection and options for control of cystic echinococcosis in Tibetan communities of Western Sichuan Province, China. PLoS Negl Trop Dis. 2009;3: e426. https://doi.org/10.1371/journal.pntd.0000426.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinkar L, Laurimae T, Acosta-Jamett G, Andresiuk V, Balkaya I, Casulli A, et al. Distinguishing Echinococcus granulosus sensu stricto genotypes G1 and G3 with confidence: a practical guide. Infect Genet Evol. 2018;64:178–84. https://doi.org/10.1016/j.meegid.2018.06.026.
Article
PubMed
Google Scholar
Zhu GQ, Yan HB, Li L, Ohiolei JA, Wu YT, Li WH, et al. First report on the phylogenetic relationship, genetic variation of Echinococcus shiquicus isolates in Tibet Autonomous Region, China. Parasites Vectors. 2020;13:590. https://doi.org/10.1186/s13071-020-04456-w.
Article
PubMed
PubMed Central
Google Scholar
Shang J, Zhang G, Yu W, He W, Wang Q, Zhong B, et al. Molecular characterization of human echinococcosis in Sichuan, Western China. Acta Trop. 2019;190:45–51. https://doi.org/10.1016/j.actatropica.2018.09.019.
Article
CAS
PubMed
Google Scholar
Heath DD, Zhang LH, McManus DP. Short report: inadequacy of yaks as hosts for the sheep dog strain of Echinococcus granulosus or for E. Multilocularis. Am J Trop Med Hyg. 2005;72:289–90.
Article
PubMed
Google Scholar
Joshi DD, Joshi AB, Joshi H. Epidemiology of echinococcosis in Nepal, Southeast Asian. J Trop Med Public Health. 1997;28:26–31.
Google Scholar
Kinkar L, Korhonen PK, Cai H, Gauci CG, Lightowlers MW, Saarma U, et al. Long-read sequencing reveals a 4.4 kb tandem repeat region in the mitogenome of Echinococcus granulosus (sensu stricto) genotype G1. Parasites Vectors. 2019;12:238. https://doi.org/10.1186/s13071-019-3492-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sadjjadi SM, Mikaeili F, Karamian M, Maraghi S, Sadjjadi FS, Shariat-Torbaghan S, et al. Evidence that the Echinococcus granulosus G6 genotype has an affinity for the brain in humans. Int J Parasitol. 2013;43:875–7. https://doi.org/10.1016/j.ijpara.2013.06.008.
Article
CAS
PubMed
Google Scholar