Fontenille D, Failloux AB, Romi R, Takken W, Knols BG. Should we expect chikungunya and dengue in southern Europe? In: Takken W, Knols BGJ, editors. Emerging pests and vectorborne diseases in Europe. Wageningen: Wageningen Academic Publishers; 2007. p. 169–84.
Google Scholar
WHO, World Health Organization. Global vector control response 2017–2030. Geneva: World Health Organization. 2017. https://www.paho.org/en/documents/global-vector-control-response-2017-2030-0. Accessed 28 Dec 2021.
European Centre for Disease Prevention and Control. Clusters of autochthonous chikungunya cases in Italy, first update—9 October 2017. Stockholm: ECDC. 2017. https://www.ecdc.europa.eu/sites/default/files/documents/RRA-chikungunya-Italy-update-9-Oct-2017.pdf. Accessed 29 Sep 2021.
Amraoui F, Ayed WB, Madec Y, Faraj C, Himmi O, Btissam A, et al. Potential of Aedes albopictus to cause the emergence of arboviruses in Morocco. PLoS Negl Trop Dis. 2019;13: e0006997. https://doi.org/10.1371/journal.pntd.0006997.
Article
PubMed
PubMed Central
Google Scholar
Lai Z, Zhou T, Zhou J, Liu S, Xu Y, Gu J, et al. Vertical transmission of Zika virus in Aedes albopictus. PLoS Negl Trop Dis. 2020;14: e0008776. https://doi.org/10.1371/journal.pntd.0008776.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazzarini L, Barzon L, Foglia F, Manfrin V, Pacenti M, Pavan G, et al. First autochthonous dengue outbreak in Italy, August 2020. Eurosurveillance. 2020;25:2001606.
Article
Google Scholar
Adhami J, Murati N. Prani e mushkonjës Aedes albopictus në Shqipëri [Presence of the mosquito Aedes albopictus in Albania]. Rev Mjekdsore. 1987;1:13–6.
Google Scholar
Benedict MQ, Levine RS, Hawley WA, Lounibos LP. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 2007;7:76–85. https://doi.org/10.1089/vbz.2006.0562.
Article
PubMed
Google Scholar
Medlock JM, Hansford KM, Versteirt V, Cull B, Kampen H, Fontenille D, et al. An entomological review of invasive mosquitoes in Europe. Bull Entomol Res. 2015;105:637–63. https://doi.org/10.1017/S0007485315000103.
Article
CAS
PubMed
Google Scholar
Invasive Species Specialist Group. Aedes albopictus. In: Global Invasive Species Database. ISSG. 2021. http://www.iucngisd.org/gisd/species.php?sc=109. Accessed 15 Sep 2021.
Sabatini A, Raineri V, Trovato G, Coluzzi M. Aedes albopictus in Italy and possible diffusion of the species into the Mediterranean area. Parassitologia. 1990;32:301–4.
CAS
PubMed
Google Scholar
Romi R, Toma L, Severini F, Di Luca M. Twenty years of the presence of Aedes albopictus in Italy—from the annoying pest mosquito to the real disease vector. Eur Infect Dis. 2008;2:98–101.
Google Scholar
Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 2009;11:1177–85. https://doi.org/10.1016/j.micinf.2009.05.005.
Article
CAS
PubMed
Google Scholar
Delatte H, Desvars A, Bouetard A, Bord S, Gimonneau G, Vourc’h G, et al. Blood-feeding behavior of Aedes albopictus, a vector of chikungunya on La Reunion. Vector Borne Zoonotic Dis. 2010;10:249–58. https://doi.org/10.1089/vbz.2009.0026.
Article
PubMed
Google Scholar
Müller GC, Kravchenko VD, Junnila A, Schlein Y. Tree-hole breeding mosquitoes in Israel. J Vector Ecol. 2012;37:102–9. https://doi.org/10.1111/j.1948-7134.2012.00206.x.
Article
PubMed
Google Scholar
Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 2015;4:e08347. https://doi.org/10.7554/eLife.08347.001.
Article
PubMed
PubMed Central
Google Scholar
Dalla Pozza G, Majori G. First record of Aedes albopictus establishment in Italy. J Am Mosq Control Assoc. 1992;8:318–20.
CAS
PubMed
Google Scholar
Tisseuil C, Velo E, Bino S, Kadriaj P, Mersini K, Shukullari A, et al. Forecasting the spatial and seasonal dynamic of Aedes albopictus oviposition activity in Albania and Balkan countries. PLoS Negl Trop Dis. 2018;12: e0006236. https://doi.org/10.1371/journal.pntd.0006236.
Article
PubMed
PubMed Central
Google Scholar
Romiti F, Ermenegildi A, Magliano A, Rombolà P, Varrenti D, Giammattei R, et al. Aedes albopictus (Diptera: Culicidae) monitoring in the Lazio region (central Italy). J Med Entomol. 2021;58:847–56. https://doi.org/10.1093/jme/tjaa222.
Article
PubMed
Google Scholar
Fischer D, Thomas SM, Niemitz F, Reineking B, Beierkuhnlein C. Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions. Glob Planet Change. 2011;78:54–64. https://doi.org/10.1016/j.gloplacha.2011.05.008.
Article
Google Scholar
Koch LK, Cunze S, Werblow A, Kochmann J, Dörge DD, Mehlhorn H, et al. Modeling the habitat suitability for the arbovirus vector Aedes albopictus (Diptera: Culicidae) in Germany. Parasitol Res. 2015;115:957–64. https://doi.org/10.1007/s00436-015-4822-3.
Article
PubMed
Google Scholar
Hanson SM, Craig GB Jr. Cold acclimation, diapause, and geographic origin affect cold hardiness in eggs of Aedes albopictus (Diptera: Culicidae). J Med Entomol. 1994;31:192–201. https://doi.org/10.1093/jmedent/31.2.192.
Article
CAS
PubMed
Google Scholar
Alto BW, Juliano SA. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J Med Entomol. 2001;38:646–56. https://doi.org/10.1603/0022-2585-38.5.646.
Article
CAS
PubMed
Google Scholar
Medlock JM, Avenell D, Barrass I, Leach S. Analysis of the potential for survival and seasonal activity of Aedes albopictus (Diptera: Culicidae) in the United Kingdom. J Vector Ecol. 2006;31:292–304. https://doi.org/10.3376/1081-1710(2006)31[292:AOTPFS]2.0.CO;2.
Article
PubMed
Google Scholar
Roiz D, Rosa R, Arnoldi D, Rizzoli A. Effects of temperature and rainfall on the activity and dynamics of host-seeking Aedes albopictus females in northern Italy. Vector-Borne Zoonotic Dis. 2010;10:811–6. https://doi.org/10.1089/vbz.2009.0098.
Article
PubMed
Google Scholar
Elbers AR, Koenraadt CJ, Meiswinkel R. Mosquitoes and Culicoides biting midges: vector range and the influence of climate change. Rev Sci Tech. 2015;34:123–37. https://doi.org/10.20506/rst.34.1.2349.
Article
CAS
PubMed
Google Scholar
Charrel RN, Leparc-Goffart I, Gallian P, de Lamballerie X. Globalization of chikungunya: 10 years to invade the world. Clin Microbiol Infect. 2014;20:662. https://doi.org/10.1111/1469-0691.12694.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kraemer MU, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4:854–63. https://doi.org/10.1038/s41564-019-0376-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
European Centre for Disease Prevention and Control. Development of Aedes albopictus risk maps. Stockholm: ECDC. 2009. https://www.ecdc.europa.eu/en/publications-data/development-aedes-albopictus-risk-maps. Accessed 28 Sep 2021.
European Centre for Disease Prevention and Control. Guidelines for the surveillance of invasive mosquitoes in Europe. Stockholm: ECDC. 2012. https://www.ecdc.europa.eu/en/publications-data/guidelines-surveillance-invasive-mosquitoes-europe. Accessed 28 Sep 2021.
Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007;370:1840–6. https://doi.org/10.1016/S0140-6736(07)61779-6.
Article
CAS
PubMed
Google Scholar
Venturi G, Di Luca M, Fortuna C, Remoli ME, Riccardo F, Severini F, et al. Detection of a chikungunya outbreak in central Italy, August to September 2017. Euro Surveill. 2017;22:17–00646. https://doi.org/10.2807/1560-7917.es.2017.22.39.17-00646.
Article
PubMed Central
Google Scholar
Ministero della Salute. Piano Nazionale di sorveglianza e risposta alle arbovirosi trasmesse da zanzare invasive (Aedes sp.) con particolare riferimento ai virus chikungunya, dengue e Zika. 2018. https://www.salute.gov.it/portale/news/p3_2_1_1_1.jsp?menu=notizie&id=3374. Accessed 14 Oct 2021.
Ministero della Salute. Piano Nazionale di prevenzione, sorveglianza e risposta alle Arbovirosi (PNA) 2020–2025. 2019. https://www.salute.gov.it/portale/malattieInfettive/dettaglioPubblicazioniMalattieInfettive.jsp?lingua=italiano&id=2947. Accessed 14 Oct 2021.
Scholte EJ, Schaffner F. Waiting for the tiger: establishment and spread of the Aedes albopictus mosquito in Europe. In: Takken W, Knols BGJ, editors. Emerging pests and vector-borne diseases in Europe. Wageningen: Wageningen Academic Publishers; 2007. p. 241–60.
Google Scholar
ISTAT (Istituto nazionale di statistica). La struttura del territorio. In: Rapporto sul territorio 2020—Ambiente economia e società. 2020. https://doi.org/10.1481/Istat.RapportoTerritorio.2020. Accessed 17 Nov 2021.
Rubel F, Kottek M. Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z. 2010;19:135–41. https://doi.org/10.1127/0941-2948/2010/0430.
Article
Google Scholar
Beilhe LB, Arnoux S, Delatte H, Lajoie G, Fontenille D. Spread of invasive Aedes albopictus and decline of resident Aedes aegypti in urban areas of Mayotte 2007–2010. Biol Invasions. 2012;14:1623–33. https://doi.org/10.1007/s10530-012-0177-1.
Article
Google Scholar
CIESIN, Center for International Earth Science Information Network–Columbia University. Gridded population of the world, version 4 (GPWv4): Population count, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). 2018. https://doi.org/10.7927/H4JW8BX5. Accessed 02 Feb 2021.
Cohen JE, Small C. Hypsographic demography: the distribution of human population by altitude. Proc Natl Acad Sci. 1998;95:14009–14. https://doi.org/10.1073/pnas.95.24.14009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goellner E, Neckel A, Bodah BW, Maculan LS, de Almeida Silva CCO, Junior DP, et al. Geospatial analysis of Ae. aegypti foci in southern Brazil. J Environ Chem Eng. 2021;9:106645. https://doi.org/10.1016/j.jece.2021.106645.
Article
CAS
Google Scholar
Severini F, Toma L, Di Luca M, Romi R. Italian mosquitoes: general information and identification of adults (Diptera, Culicidae). Le zanzare italiane: generalità e identificazione degli adulti (Diptera, Culicidae). Fragm Entomol. 2009;41:213–372.
Article
Google Scholar
Ree HI. Taxonomic review and revised keys of the Korean mosquitoes (Diptera: Culicidae). Entomol Res. 2003;33:39–52.
Article
Google Scholar
Wood SN. GAMs in practice: mgcvIn: generalized additive models: an introduction with R (2nd edition). Boca Raton: CRC; 2017.
Book
Google Scholar
R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2018. https://www.r-project.org.
Pedersen EJ, Miller DL, Simpson GL, Ross N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ. 2019;7: e6876. https://doi.org/10.7717/peerj.6876.
Article
PubMed
PubMed Central
Google Scholar
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. 2nd edn. New York: Springer-Verlag; 2002.
Google Scholar
Borcard D, Gillet F, Legendre P. Numerical ecology with R. First edn. New York: Springer; 2011. https://doi.org/10.1007/978-1-4419-7976-6.
Book
Google Scholar
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2019. http://qgis.osgeo.org.
Tarquini S, Isola I, Favalli M, Mazzarini F, Bisson M, Pareschi MT, et al. TINITALY/01: a new triangular irregular network of Italy. Ann Geophys. 2007;50:407–25.
Google Scholar
Edwards C, Crone E. Estimating abundance and phenology from transect count data with GLMs. Oikos. 2021;00:1–11. https://doi.org/10.5061/dryad.rn8pk0p9h.
Article
Google Scholar
Venables WN, Ripley BD. Modern applied statistics with S. 4th edn. New York: Springer; 2002. https://doi.org/10.1007/978-0-387-21706-2.
Book
Google Scholar
Jackson C. Multi-state models for panel data: the msm package for R. J Stat Softw. 2011;38:1–28. https://doi.org/10.18637/jss.v038.i08.
Article
Google Scholar
Williams BK, Nichols JD, Conroy MJ. Analysis and management of animal populations. San Diego: Academic Press; 2002.
Google Scholar
Bonoan RE, Crone EE, Edwards CB, Schultz CB. Changes in phenology and abundance of an at-risk butterfly. J Insect Conserv. 2021;25:499–510. https://doi.org/10.1007/s10841-021-00318-7.
Article
Google Scholar
ISTAT (Istituto nazionale di statistica). Censimento permanente della popolazione e delle abitazioni. 2021. https://esploradati.censimentopopolazione.istat.it/databrowser/#/it. Accessed 27 Dec 2021.
Michielini J, Dopman E, Crone EE. Changes in flight period predict trends in Massachusetts butterflies. Ecol Lett. 2021;24:249–57. https://doi.org/10.1111/ele.13637.
Article
PubMed
Google Scholar
Delatte H, Dehecq JS, Thiria J, Domerg C, Paupy C, Fontenille D. Geographic distribution and developmental sites of Aedes albopictus (Diptera: Culicidae) during a chikungunya epidemic event. Vector Borne Zoonotic Dis. 2008;8:25–34. https://doi.org/10.1089/vbz.2007.0649.
Article
CAS
PubMed
Google Scholar
Echeverry-Cárdenas E, López-Castañeda C, Carvajal-Castro JD, Aguirre-Obando OA. Potential geographic distribution of the tiger mosquito Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) in current and future conditions for Colombia. PLoS Negl Trop Dis. 2021;15: e0008212. https://doi.org/10.1371/journal.pntd.0008212.
Article
PubMed
PubMed Central
Google Scholar
Dhimal M, Gautam I, Joshi HD, O’Hara RB, Ahrens B, Kuch U. Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Negl Trop Dis. 2015;9: e0003545. https://doi.org/10.1371/journal.pntd.0003545.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kramer IM, Pfeiffer M, Steffens O, Schneider F, Gerger V, Phuyal P, et al. The ecophysiological plasticity of Aedes aegypti and Aedes albopictus concerning overwintering in cooler ecoregions is driven by local climate and acclimation capacity. Sci Total Environ. 2021;778: 146128. https://doi.org/10.1016/j.scitotenv.2021.146128.
Article
CAS
PubMed
Google Scholar
Kotsakiozi P, Richardson JB, Pichler V, Favia G, Martins AJ, Urbanelli S, et al. Population genomics of the Asian tiger mosquito, Aedes albopictus: insights into the recent worldwide invasion. Ecol Evol. 2017;00:1–15. https://doi.org/10.1002/ece3.3514.
Article
Google Scholar
Pichler V, Kotsakiozi P, Caputo B, Serini P, Caccone A, della Torre A. Complex interplay of evolutionary forces shaping population genomic structure of invasive Aedes albopictus in southern Europe. PLoS Negl Trop Dis. 2019;13: e0007554. https://doi.org/10.1371/journal.pntd.0007554.
Article
PubMed
PubMed Central
Google Scholar
Rochlin I, Ninivaggi DV, Hutchinson ML, Farajollahi A. Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in northeastern USA: implications for public health practitioners. PLoS ONE. 2013;8: e60874. https://doi.org/10.1371/journal.pone.0060874.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X. Emerging arboviruses: why today? One Health. 2017;4:1–13. https://doi.org/10.1016/j.onehlt.2017.06.001.
Article
PubMed
PubMed Central
Google Scholar
Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis. 2019;13: e0007213. https://doi.org/10.1371/journal.pntd.0007213.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Kamara F, Zhou G, Puthiyakunnon S, Li C, Liu Y, et al. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis. 2014;8: e3301. https://doi.org/10.1371/journal.pntd.0003301.
Article
PubMed
PubMed Central
Google Scholar
Pröbstl-Haider U, Haider W, Wirth V, Beardmore B. Will climate change increase the attractiveness of summer destinations in the European Alps? A survey of German tourists. J Outdoor Recreat Tour. 2015;11:44–57. https://doi.org/10.1016/j.jort.2015.07.003.
Article
Google Scholar
Lounibos LP, Kramer LD. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J Infect Dis. 2016;214:S453–8. https://doi.org/10.1093/infdis/jiw285.
Article
PubMed
PubMed Central
Google Scholar
Rijal KR, Adhikari B, Ghimire B, Dhungel B, Pyakurel UR, Shah P, et al. Epidemiology of dengue virus infections in Nepal, 2006–2019. Infect Dis Poverty. 2021;10:52. https://doi.org/10.1186/s40249-021-00837-0.
Article
PubMed
PubMed Central
Google Scholar