Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: a review. Infect Genet Evol. 2019;67:191–209.
Article
PubMed
Google Scholar
Kraemer MUG, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4:854–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merle H, Donnio A, Jean-Charles A, Guyomarch J, Hage R, Najioullah F, et al. Ocular manifestations of emerging arboviruses: dengue fever, chikungunya, Zika virus, West Nile virus, and yellow fever. J Fr Ophtalmol. 2018;41:e235–43.
Article
CAS
PubMed
Google Scholar
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH. How many species are infected with Wolbachia?—A statistical analysis of current data. FEMS Microbiol Lett. 2008;281:215–20.
Article
CAS
PubMed
Google Scholar
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6:741–51.
Article
CAS
PubMed
Google Scholar
Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell. 2009;139:1268–78.
Article
PubMed
Google Scholar
Bian G, Xu Y, Lu P, Xie Y, Xi Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLOS Pathog. 2010;6:1–10.
Article
CAS
Google Scholar
Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe. 2016;19:771–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahantarig A, Trinachartvanit W, Kittayapong P. Relative Wolbachia density of field-collected Aedes albopictus mosquitoes in Thailand. J Vector Ecol. 2008;33:173–7.
Article
PubMed
Google Scholar
Xi Z, Dean JL, Khoo C, Dobson SL. Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection. Insect Biochem Mol Biol. 2005;35:903–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xi Z, Khoo CCH, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science. 2005;310:326–8.
Article
CAS
PubMed
Google Scholar
Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011;476:450–5.
Article
CAS
PubMed
Google Scholar
McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, et al. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science. 2009;323:141–4.
Article
CAS
PubMed
Google Scholar
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife. 2020;9:1–36.
Article
Google Scholar
Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476:454–9.
Article
CAS
PubMed
Google Scholar
Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N, et al. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. Curr Biol. 2019;29:4241-4248.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caputo B, Moretti R, Manica M, Serini P, Lampazzi E, Bonanni M, et al. A bacterium against the tiger: preliminary evidence of fertility reduction after release of Aedes albopictus males with manipulated Wolbachia infection in an Italian urban area. Pest Manag Sci. 2020;76:1324–32.
Article
CAS
PubMed
Google Scholar
Tantowijoyo W, Andari B, Arguni E, Budiwati N, Nurhayati I, Fitriana I, et al. Stable establishment of wMel Wolbachia in Aedes aegypti populations in Yogyakarta, Indonesia. PLOS Negl Trop Dis. 2020;14:1–13.
Article
Google Scholar
Clancy DJ, Hoffmann AA. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol Exp Appl. 1998;86:13–24.
Article
Google Scholar
Noda H, Koizumi Y, Zhang Q, Deng K. Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol. 2001;31:727–37.
Article
CAS
PubMed
Google Scholar
Veneti Z, Clark ME, Zabalou S, Karr TL, Savakis C, Bourtzis K. Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics. 2003;164:545–52.
Article
PubMed
PubMed Central
Google Scholar
Calvitti M, Marini F, Desiderio A, Puggioli A, Moretti R. Wolbachia density and cytoplasmic incompatibility in Aedes albopictus: concerns with using artificial Wolbachia infection as a vector suppression tool. PLoS ONE. 2015;10:1–19.
Article
CAS
Google Scholar
Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, Jiggins FM, et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 2013;9: e1003896.
Article
PubMed
PubMed Central
CAS
Google Scholar
Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, Bourtzis K, et al. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog. 2014;10:e1004369.
Article
PubMed
PubMed Central
CAS
Google Scholar
Amuzu HE, McGraw EA. Wolbachia-based dengue virus inhibition is not tissue-specific in Aedes aegypti. PLoS Negl Trop Dis. 2016;10:1–18.
Article
CAS
Google Scholar
López-Madrigal S, Duarte EH. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol Lett. 2020;366:1–9.
Google Scholar
Chrostek E, Teixeira L. Within host selection for faster replicating bacterial symbionts. PLoS ONE. 2018;13: e0191530.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mouton L, Henri H, Charif D, Boulétreau M, Vavre F. Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis. Biol Lett. 2007;3:210–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serbus LR, White PM, Silva JP, Rabe A, Teixeira L, Albertson R, et al. The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog. 2015;11:1–25.
CAS
Google Scholar
Kaur R, Martinez J, Rota-Stabelli O, Jiggins FM, Miller WJ. Age, tissue, genotype and virus infection regulate Wolbachia levels in Drosophila. Mol Ecol. 2020;29:2063–79.
Article
CAS
PubMed
Google Scholar
Duron O, Fort P, Weill M. Influence of aging on cytoplasmic incompatibility, sperm modification and Wolbachia density in Culex pipiens mosquitoes. Heredity. 2007;98:368–74.
Article
CAS
PubMed
Google Scholar
Osborne SE, Iturbe-Ormaetxe I, Brownlie JC, O’Neill SL, Johnson KN. Antiviral protection and the importance of Wolbachia density and tissue tropism in Drosophila simulans. Appl Environ Microbiol. 2012;78:6922–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 2018;14:1–19.
Article
CAS
Google Scholar
Ant TH, Sinkins SP. A Wolbachia triple-strain infection generates self-incompatibility in Aedes albopictus and transmission instability in Aedes aegypti. Parasit Vectors. 2018;11:1–8.
Article
Google Scholar
Emerson KJ, Glaser RL. Cytonuclear epistasis controls the density of symbiont Wolbachia pipientis in nongonadal tissues of mosquito Culex quinquefasciatus. G3 (Bethesda). 2017;7:2627–35.
Article
CAS
Google Scholar
Xu J, Hopkins K, Sabin L, Yasunaga A, Subramanian H, Lamborn I, et al. ERK signaling couples nutrient status to antiviral defense in the insect gut. Proc Natl Acad Sci USA. 2013;110:15025–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.
Article
CAS
PubMed
Google Scholar
Axford JK, Ross PA, Yeap HL, Callahan AG, Hoffmann AA. Fitness of wAlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am J Trop Med Hyg. 2016;94:507–16.
Article
PubMed
PubMed Central
Google Scholar
Ford SA, Allen SL, Ohm JR, Sigle LT, Sebastian A, Albert I, et al. Selection on Aedes aegypti alters Wolbachia-mediated dengue virus blocking and fitness. Nat Microbiol. 2019;4:1832–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joubert DA, Walker T, Carrington LB, De Bruyne JT, Kien DHT, Hoang NLT, et al. Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management. PLOS Pathog. 2016;12:1–19.
Article
CAS
Google Scholar
Pietri JE, DeBruhl H, Sullivan W. The rich somatic life of Wolbachia. MicrobiologyOpen. 2016;5:923–36.
Article
PubMed
PubMed Central
Google Scholar
Jervis MA. Insects as natural enemies. Dordrecht: Springer; 2005.
Book
Google Scholar
Martinez J, Ok S, Smith S, Snoeck K, Day JP, Jiggins FM. Should symbionts be nice or selfish? Antiviral effects of Wolbachia are costly but reproductive parasitism is not. PLoS Pathog. 2015;11:1–20.
Article
CAS
Google Scholar
Zouache K, Voronin D, Tran-Van V, Mousson L, Failloux AB, Mavingui P. Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PLoS One. 2009;4: e6388.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kose H, Karr TL. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by an anti-Wolbachia monoclonal antibody. Mech Dev. 1995;51:275–88.
Article
CAS
PubMed
Google Scholar
Serbus LR, Sullivan W. A cellular basis for Wolbachia recruitment to the host germline. PLoS Pathog. 2007;3:1930–7.
Article
CAS
Google Scholar
Veneti Z, Clark ME, Karr TL, Savakis C, Bourtzis K. Heads or tails: host-parasite interactions in the Drosophila–Wolbachia system. Appl Environ Microbiol. 2004;70:5366–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clemons A, Haugen M, Flannery E, Tomchaney M, Kast K, Jacowski C, et al. Aedes aegypti: an emerging model for vector mosquito development. Cold Spring Harb Protoc. 2010; 2010(10):pdb.emo141. https://doi.org/10.1101/pdb.emo141.
Deehan M, Lin W, Blum B, Emili A, Frydman H. Intracellular density of Wolbachia is mediated by host autophagy and the bacterial cytoplasmic incompatibility gene cifB in a cell type-dependent manner in Drosophila melanogaster. MBio. 2021;12:1–19.
Article
Google Scholar
Ye YH, Woolfit M, Rancès E, O’Neill SL, McGraw EA. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS Negl Trop Dis. 2013;7: e2362.
Article
PubMed
PubMed Central
Google Scholar
Tortosa P, Courtiol A, Moutailler S, Failloux AB, Weill M. Chikungunya-Wolbachia interplay in Aedes albopictus. Insect Mol Biol. 2008;17:677–84.
Article
CAS
PubMed
Google Scholar
Ware-Gilmore F, Sgrò CM, Xi Z, Dutra HLC, Jones MJ, Shea K, et al. Microbes increase thermal sensitivity in the mosquito Aedes aegypti, with the potential to change disease distributions. PLoS Negl Trop Dis. 2021;15: e0009548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sigle LT, McGraw EA. Expanding the canon: non-classical mosquito genes at the interface of arboviral infection. Insect Biochem Mol Biol. 2019;109:72–80.
Article
CAS
PubMed
Google Scholar
Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PLoS ONE. 2012;7: e50512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sim S, Ramirez JL, Dimopoulos G. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLOS Pathog. 2012;8: e1002631.
Article
PubMed
PubMed Central
Google Scholar
Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2004;2:327–41.
Article
CAS
Google Scholar
Horne-Badovinac S. The Drosophila egg chamber—a new spin on how tissues elongate. Integr Comp Biol. 2014;54:667–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christensen S, Pérez Dulzaides R, Hedrick VE, Momtaz AJMZ, Nakayasu ES, Paul LN, et al. Wolbachia endosymbionts modify Drosophila ovary protein levels in a context-dependent manner. Appl Environ Microbiol. 2016;82:5354–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fast EM, Toomey ME, Panaram K, Desjardins D, Kolaczyk ED, Frydman HM. Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche. Science. 2011;334:990–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Toomey ME, Panaram K, Fast EM, Beatty C, Frydman HM. Evolutionarily conserved Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and favor infection. Proc Natl Acad Sci USA. 2013;110:10788–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mouton L, Henri H, Bouletreau M, Vavre F. Strain-specific regulation of intracellular Wolbachia density in multiply infected insects. Mol Ecol. 2003;12:3459–65.
Article
CAS
PubMed
Google Scholar
Madhav M, Brown G, Morgan JAT, Asgari S, McGraw EA, James P. Transinfection of buffalo flies (Haematobia irritans exigua) with Wolbachia and effect on host biology. Parasit Vectors. 2020;13:296.
Article
PubMed
PubMed Central
Google Scholar
Ross PA, Wiwatanaratanabutr I, Axford JK, White VL, Endersby-Harshman NM, Hoffmann AA. Wolbachia infections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLoS Pathog. 2017;13: e1006006.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bénard A, Henri H, Noûs C, Vavre F, Kremer N, Duncan A, et al. Wolbachia load variation in Drosophila is more likely caused by drift than by host genetic factors. Peer Community Evol Biol. 2021;1:e38. https://doi.org/10.1101/2020.11.29.402545.
Layton EM, On J, Perlmutter JI, Bordenstein SR, Shropshire JD. Paternal grandmother age affects the strength of Wolbachia-induced cytoplasmic incompatibility in Drosophila melanogaster. MBio. 2019;10: e01879-19.
Article
PubMed
PubMed Central
Google Scholar
Walker T, Quek S, Jeffries CL, Bandibabone J, Dhokiya V, Bamou R, et al. Stable high-density and maternally inherited Wolbachia infections in Anopheles moucheti and Anopheles demeilloni mosquitoes. Curr Biol. 2021;31:2310-2320.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Terradas G, Allen SL, Chenoweth SF, McGraw EA. Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. Parasit Vectors. 2017;10:1–12.
Article
CAS
Google Scholar
Ritchie SA, Townsend M, Paton CJ, Callahan AG, Hoffmann AA. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLoS Negl Trop Dis. 2015;9:1–17.
Article
CAS
Google Scholar
Dutton TJ, Sinkins SP. Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions. Insect Mol Biol. 2004;13:317–22.
Article
CAS
PubMed
Google Scholar
Joubert DA, O’Neill SL. Comparison of stable and transient Wolbachia infection models in Aedes aegypti to block dengue and West Nile viruses. PLoS Negl Trop Dis. 2017;11:1–14.
Article
Google Scholar
Li H. Single-cell RNA sequencing in Drosophila: technologies and applications. Wiley Interdiscip Rev Dev Biol. 2021;10:e396.
Article
CAS
PubMed
Google Scholar
Foo IJH, Hoffmann AA, Ross PA. Cross-generational effects of heat stress on fitness and Wolbachia density in Aedes aegypti mosquitoes. Trop Med Infect Dis. 2019;4:13.
Article
PubMed Central
Google Scholar