Mubbashir H, Munir S, Kashif R, Nawaz HB, Abdul B, Baharullah K. Characterization of dengue virus in Aedes aegypti and Aedes albopictus spp. of mosquitoes: a study in Khyber Pakhtunkhwa, Pakistan. Mol Biol Res Commun. 2018;7:77–82.
PubMed
PubMed Central
Google Scholar
Tsujimoto H, Hanley KA, Sundararajan A, Devitt NP, Schilkey FD, Hansen IA. Correction: dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus. PLoS ONE. 2018;13:e0192128.
Article
PubMed
PubMed Central
Google Scholar
Soni M, Khan SA, Bhattacharjee CK, Dutta P. Experimental study of dengue virus infection in Aedes aegypti and Aedes albopictus: a comparative analysis on susceptibility, virus transmission and reproductive success. J Invertebr Pathol. 2020;175: 107445.
Article
CAS
PubMed
Google Scholar
Guo XX, Zhu XJ, Li CX, Dong YD, Zhang YM, Xing D, et al. Vector competence of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) for DEN2-43 and New Guinea C virus strains of dengue 2 virus. Acta Trop. 2013;128:566–70.
Article
PubMed
Google Scholar
Whitehorn J, Kien DT, Nguyen NM, Nguyen HL, Kyrylos PP, Carrington LB, et al. Comparative susceptibility of Aedes albopictus and Aedes aegypti to dengue virus infection after feeding on blood of viremic humans: implications for public health. J Infect Dis. 2015;212:1182–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar A, Srivastava P, Sirisena P, Dubey SK, Kumar R, Shrinet J, et al. Mosquito innate immunity. Insects. 2018;9:95.
Article
CAS
PubMed Central
Google Scholar
Wang YH, Chang MM, Wang XL, Zheng AH, Zou Z. The immune strategies of mosquito Aedes aegypti against microbial infection. Dev Comp Immunol. 2018;83:12–21.
Article
CAS
PubMed
Google Scholar
Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013;6:1543–75.
Article
Google Scholar
Lamiable O, Arnold J, de Faria I, Olmo RP, Bergami F, Meignin C, et al. Analysis of the contribution of hemocytes and autophagy to Drosophila antiviral immunity. J Virol. 2016;90:5415–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tassetto M, Kunitomi M, Andino R. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell. 2017;169:314-325.e13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal. 2009;21:186–95.
Article
CAS
PubMed
Google Scholar
Shiao SH, Higgs S, Adelman Z, Christensen BM, Liu SH, Chen CC. Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Mol Biol. 2001;10:315–21.
Article
CAS
PubMed
Google Scholar
Hillyer JF, Schmidt SL, Christensen BM. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res. 2003;313:117–27.
Article
PubMed
Google Scholar
Barton K, Winckelmann A, Palmer S. HIV-1 reservoirs during suppressive therapy. Trends Microbiol. 2016;24:345–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui C, Liang Q, Tang X, Xing J, Sheng X, Zhan W. Differential apoptotic responses of hemocyte subpopulations to white spot syndrome virus infection in Fenneropenaeus chinensis. Front Immunol. 2020;11: 594390.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parikh GR, Oliver JD, Bartholomay LC. A haemocyte tropism for an arbovirus. J Gen Virol. 2009;90:292–6.
Article
CAS
PubMed
Google Scholar
Castillo JC, Robertson AE, Strand MR. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti. Insect Biochem Mol Biol. 2006;36:891–903.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hillyer JF, Strand MR. Mosquito hemocyte-mediated immune responses. Curr Opin Insect Sci. 2014;3:14–21.
Article
PubMed
PubMed Central
Google Scholar
King JG, Hillyer JF. Spatial and temporal in vivo analysis of circulating and sessile immune cells in mosquitoes: hemocyte mitosis following infection. BMC Biol. 2013;11:55.
Article
PubMed
PubMed Central
Google Scholar
Jiang H, Wang Y, Ma C, Kanost MR. Subunit composition of pro-phenol oxidase from Manduca sexta: molecular cloning of subunit ProPO-P1. Insect Biochem Mol Biol. 1997;27:835–50.
Article
CAS
PubMed
Google Scholar
Drif L, Brehélin M. The circulating hemocytes of Culexpipiens and Aedesaegypii: cytology histochemistry, hemograms and functions. Dev Comp Immunol. 1983;7:687–90.
Article
Google Scholar
Lee JK, Chui JLM, Lee RCH, Kong HY, Chin WX, Chu JJH. Antiviral activity of ST081006 against the dengue virus. Antivir Res. 2019;171: 104589.
Article
CAS
PubMed
Google Scholar
Dedkhad W, Bartholomay LC, Christensen BM, Hempolchom C, Chaithong U, Saeung A. Hemocyte classification of three mosquito vectors: Aedes togoi, Anopheles lesteri and Culex quinquefasciatus. Trop Biomed. 2019;36:505–13.
CAS
PubMed
Google Scholar
Raddi G, Barletta ABF, Efremova M, Ramirez JL, Cantera R, Teichmann SA, et al. Mosquito cellular immunity at single-cell resolution. Science. 2020;369:1128–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alen MM, Kaptein SJ, De Burghgraeve T, Balzarini J, Neyts J, Schols D. Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology. 2009;387:67–75.
Article
CAS
PubMed
Google Scholar
Liu P, Ridilla M, Patel P, Betts L, Gallichotte E, Shahidi L, et al. Beyond attachment: roles of DC-SIGN in dengue virus infection. Traffic. 2017;18:218–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang YL, Pai FS, Tsou YT, Mon HC, Hsu TL, Wu CY, et al. Human CLEC18 gene cluster contains C-type lectins with differential glycan-binding specificity. J Biol Chem. 2015;290:21252–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leite T, Ferreira AGA, Imler JL, Marques JT. Distinct roles of hemocytes at different stages of infection by dengue and zika viruses in Aedes aegypti mosquitoes. Front Immunol. 2021;12: 660873.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smartt CT, Shin D, Alto BW. Dengue serotype-specific immune response in Aedes aegypti and Aedes albopictus. Mem Inst Oswaldo Cruz. 2017;112:829–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai CH, Chen TH, Lin C, Shu PY, Su CL, Teng HJ. The impact of temperature and Wolbachia infection on vector competence of potential dengue vectors Aedes aegypti and Aedes albopictus in the transmission of dengue virus serotype 1 in southern Taiwan. Parasites Vectors. 2017;10:551.
Article
PubMed
PubMed Central
Google Scholar