Fries I, Camazine S. Implications of horizontal and vertical pathogen transmission for honey bee epidemiology. Apidologie. 2001;32:199–214. https://doi.org/10.1051/apido:2001122.
Article
Google Scholar
Lipsitch M, Nowak MA, Ebert D, May RM. The population dynamics of vertically and horizontally transmitted parasites. Proc R Soc B Biol Sci. 1995;260:321–7. https://doi.org/10.1098/rspb.1995.0099.
Article
CAS
Google Scholar
Lipsitch M, Siller S, Nowak MA. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution. 1996;50:1729. https://doi.org/10.2307/2410731.
Article
PubMed
Google Scholar
Le Clec’h W, Dittmer J, Raimond M, Bouchon D, Sicard M. Phenotypic shift in Wolbachia virulence towards its native host across serial horizontal passages. Proc R Soc B Biol Sci. 2017. https://doi.org/10.1098/rspb.2017.1076.
Article
Google Scholar
Ewald PW. Host-parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol Syst. 1983;14:465–85.
Article
Google Scholar
Ewald PW. The evolution of infectious diseases. Oxford: Oxford University; 1994.
Google Scholar
Herre EA. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science. 1993;259:1442–5. https://doi.org/10.1126/science.259.5100.1442.
Article
CAS
PubMed
Google Scholar
Cressler CE, Mcleod DV, Rozins C, Van Den Hoogen J, Day T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology. 2016;147:915–30. https://doi.org/10.1017/S003118201500092X.
Article
Google Scholar
Evans JD, Spivak M. Socialized medicine: Individual and communal disease barriers in honey bees. J Invertebr Pathol. 2010;103:S62–72. https://doi.org/10.1016/j.jip.2009.06.019.
Article
PubMed
Google Scholar
Sparagano OAE, Allsopp MTEP, Mank RA, Rijpkema SGT, Figueroa JV, Jongejan F. Molecular detection of pathogen DNA in ticks (acari: Ixodidae): a review. Exp Appl Acarol. 1999;23:929–60. https://doi.org/10.1023/A:1006313803979.
Article
CAS
PubMed
Google Scholar
Suzuki S, Oshima K, Kakizawa S, Arashida R, Jung H-Y, Yamaji Y, et al. Interaction between the membrane protein of a pathogen and insect microfilament complex determines insect-vector specificity. Proc Natl Acad Sci USA. 2006;103:4252–7. https://doi.org/10.1073/pnas.0508668103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vobis M, D’Haese J, Mehlhorn H, Mencke N. Evidence of horizontal transmission of feline leukemia virus by the cat flea (Ctenocephalides felis). Parasitol Res. 2003;91:467–70. https://doi.org/10.1007/s00436-003-0949-8.
Article
CAS
PubMed
Google Scholar
Liu C, Mauk MG, Hart R, Bonizzoni M, Yan G, Bau HH. A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes. PLoS ONE. 2012;7:1–7. https://doi.org/10.1371/journal.pone.0042222.
Article
CAS
Google Scholar
Lane RP, Crosskey RW. Medical insects and arachnids. Dordrecht: Springer Chapman Hall; 1993.
Book
Google Scholar
Rosenkranz P, Aumeier P, Ziegelmann B. Biology and control of Varroa destructor. J Invertebr Pathol. 2010;103:S96–119. https://doi.org/10.1016/j.jip.2009.07.016.
Article
PubMed
Google Scholar
Chen G, Wu Y, Deng J, Wen Z, Wang S, Chen Y, et al. Seasonal variation of viral infections between the eastern honey bee (Apis cerana) and the western honey bee (Apis mellifera). Microbiologyopen. 2021;10:e1162. https://doi.org/10.1002/mbo3.1162.
Article
PubMed
PubMed Central
Google Scholar
de Miranda JR, Bailey L, Ball BV, Blanchard P, Budge GE, Chejanovsky N, et al. Standard methods for virus research in Apis mellifera. J Apic Res. 2013;52:1–56. https://doi.org/10.3896/IBRA.1.52.4.22.
Article
CAS
Google Scholar
Levin S, Sela N, Erez T, Nestel D, Pettis J, Neumann P, et al. New viruses from the ectoparasite mite Varroa destructor infesting Apis mellifera and Apis cerana. Viruses. 2019;11:94. https://doi.org/10.3390/v11020094.
Article
CAS
PubMed Central
Google Scholar
Posada-Florez F, Ryabov EV, Heerman MC, Chen Y, Evans JD, Sonenshine DE, et al. Varroa destructor mites vector and transmit pathogenic honey bee viruses acquired from an artificial diet. PLoS ONE. 2020;15:1–13. https://doi.org/10.1371/journal.pone.0242688.
Article
CAS
Google Scholar
Beaurepaire A, Piot N, Doublet V, Antunez K, Campbell E, Chantawannakul P, et al. Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects. 2020;11:1–25. https://doi.org/10.3390/insects11040239.
Article
Google Scholar
McMenamin AJ, Genersch E. Honey bee colony losses and associated viruses. Curr Opin Insect Sci. 2015;8:121–9. https://doi.org/10.1016/j.cois.2015.01.015.
Article
PubMed
Google Scholar
Tehel A, Brown MJF, Paxton RJ. Impact of managed honey bee viruses on wild bees. Curr Opin Virol. 2016;19:16–22. https://doi.org/10.1016/j.coviro.2016.06.006.
Article
PubMed
Google Scholar
Chen Y-P, Siede R. Honey bee viruses. Adv Virus Res. 2007;70:33–80. https://doi.org/10.1006/rwvi.1999.0139.
Article
CAS
PubMed
Google Scholar
de Miranda JR, Cordoni G, Budge G. The acute bee paralysis virus-Kashmir bee virus-Israeli acute paralysis virus complex. J Invertebr Pathol. 2010;103:S30–47. https://doi.org/10.1016/j.jip.2009.06.014.
Article
CAS
PubMed
Google Scholar
Traynor KS, Mondet F, de Miranda JR, Techer M, Kowallik V, Oddie MAY, et al. Varroa destructor: a complex parasite, crippling honey bees worldwide. Trends Parasitol. 2020;36:592–606. https://doi.org/10.1016/j.pt.2020.04.004.
Article
CAS
PubMed
Google Scholar
Benaets K, Van Geystelen A, Cardoen D, De Smet L, De Graaf DC, Schoofs L, et al. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc R Soc B Biol Sci. 2017;284:20162149. https://doi.org/10.1098/rspb.2016.2149.
Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, et al. Bee viruses: routes of Infection in hymenoptera. Front Microbiol. 2020;11:1–22. https://doi.org/10.3389/fmicb.2020.00943.
Article
Google Scholar
Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, et al. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336:1304–6. https://doi.org/10.1126/science.1220941.
Article
CAS
PubMed
Google Scholar
Ryabov EV, Wood GR, Fannon JM, Moore JD, Bull JC, Chandler D, et al. A virulent strain of Deformed Wing Virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1004230.
Article
PubMed
PubMed Central
Google Scholar
Wilfert L, Long G, Leggett HC, Schmid-Hempel P, Butlin R, Martin SJM, et al. Honeybee disease: deformed wing virus is a recent global epidemic in honeybees driven by varroa mites. Science. 2016;351:594–7. https://doi.org/10.1126/science.aac9976.
Article
CAS
PubMed
Google Scholar
Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc Natl Acad Sci USA. 2019;116:1792–801. https://doi.org/10.1073/pnas.1818371116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryabov EV, Childers AK, Lopez D, Grubbs K, Posada-Florez F, Weaver D, et al. Dynamic evolution in the key honey bee pathogen deformed wing virus: novel insights into virulence and competition using reverse genetics. PLoS Biol. 2019;17:e3000502. https://doi.org/10.1371/journal.pbio.3000502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mordecai GJ, Wilfert L, Martin SJ, Jones IM, Schroeder DC. Diversity in a honey bee pathogen: first report of a third master variant of the deformed wing virus quasispecies. ISME J. 2016;10:1264–73. https://doi.org/10.1038/ismej.2015.178.
Article
CAS
PubMed
Google Scholar
Brettell L, Mordecai G, Schroeder D, Jones I, da Silva J, Vicente-Rubiano M, et al. A comparison of deformed wing virus in deformed and asymptomatic honey bees. Insects. 2017;8:28. https://doi.org/10.3390/insects8010028.
Article
PubMed Central
Google Scholar
de Miranda JR, Brettell LE, Chejanovsky N, Childers AK, Dalmon A, Deboutte W, et al. Cold case: The disappearance of Egypt bee virus, a fourth distinct master strain of deformed wing virus linked to honeybee mortality in 1970’s Egypt. Virol J. 2022;19:1–11. https://doi.org/10.1186/s12985-022-01740-2.
Article
CAS
Google Scholar
Gisder S, Möckel N, Eisenhardt D, Genersch E. In vivo evolution of viral virulence: switching of deformed wing virus between hosts results in virulence changes and sequence shifts. Environ Microbiol. 2018;20:4612–28. https://doi.org/10.1111/1462-2920.14481.
Article
CAS
PubMed
Google Scholar
Dalmon A, Desbiez C, Coulon M, Thomasson M, Le Conte Y, Alaux C, et al. Evidence for positive selection and recombination hotspots in deformed wing virus (DWV). Sci Rep. 2017;7:1–12. https://doi.org/10.1038/srep41045.
Article
CAS
Google Scholar
Kevill JL, Stainton KC, Schroeder DC, Martin SJ. Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies. Arch Virol. 2021;166:2693–702. https://doi.org/10.1007/s00705-021-05162-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kulhanek K, Garavito A, vanEngelsdorp D. Accelerated Varroa destructor population growth in honey bee (Apis mellifera) colonies is associated with visitation from n on-natal bees. Sci Rep. 2021;11:1–15. https://doi.org/10.1038/s41598-021-86558-8.
Article
CAS
Google Scholar
Mordecai GJ, Brettell LE, Martin SJ, Dixon D, Jones IM, Schroeder DC. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies. ISME J. 2016;10:1182–91. https://doi.org/10.1038/ismej.2015.186.
Article
CAS
PubMed
Google Scholar
Ryabov EV, Childers AK, Chen Y, Madella S, Nessa A, VanEngelsdorp D, et al. Recent spread of Varroa destructor virus-1, a honey bee pathogen, in the United States. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/s41598-017-17802-3.
Article
CAS
Google Scholar
McMahon DP, Natsopoulou ME, Doublet V, Fürst M, Weging S, Brown MJF, et al. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc Biol Sci. 2016;283:20160811. https://doi.org/10.1098/rspb.2016.0811.
Martin SJ, Brettell LE. Deformed wing virus in honeybees and other insects. Annu Rev Virol. 2019;6:49–69. https://doi.org/10.1146/annurev-virology-092818-015700.
Article
CAS
PubMed
Google Scholar
Norton AM, Remnant EJ, Buchmann G, Beekman M. Accumulation and competition amongst deformed wing virus genotypes in naïve Australian honeybees provides insight into the increasing global prevalence of genotype B. Front Microbiol. 2020;11:620. https://doi.org/10.3389/fmicb.2020.00620.
Article
PubMed
PubMed Central
Google Scholar
Grindrod I, Kevill JL, Villalobos EM, Schroeder DC, Martin SJT. years of deformed Wing Virus (DWV) in Hawaiian honey bees (Apis mellifera), the dominant DWV-A variant is potentially being replaced by variants with a DWV-B coding sequence. Viruses. 2021;13:969. https://doi.org/10.3390/v13060969.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ray AM, Davis SL, Rasgon JL, Grozinger CM. Simulated vector transmission differentially influences dynamics of two viral variants of deformed wing virus in honey bees (Apis mellifera). J Gen Virol. 2021;102:001687. https://doi.org/10.1099/jgv.0.001687.
Article
CAS
PubMed Central
Google Scholar
Gisder S, Genersch E. Direct evidence for infection of Varroa destructor mites with the bee-pathogenic deformed wing virus variant B, but not variant A, via fluorescence in situ hybridization analysis. J Virol. 2021;95:e01786-20. https://doi.org/10.1128/jvi.01786-20.
Gusachenko ON, Woodford L, Balbirnie-Cumming K, Campbell EM, Christie CR, et al. Green bees: reverse genetic analysis of deformed wing virus transmission, replication, and tropism. Viruses. 2020;12:532. https://doi.org/10.3390/v12050532.
Article
CAS
PubMed Central
Google Scholar
Posada-florez F, Childers AK, Heerman MC, Egekwu NI, Cook SC, Chen Y, et al. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non—propagative manner. Sci Rep. 2019;9:12445. https://doi.org/10.1038/s41598-019-47447-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dubois E, Dardouri M, Schurr F, Cougoule N, Sircoulomb F, Thiéry R. Outcomes of honeybee pupae inoculated with deformed wing virus genotypes A and B. Apidologie. 2020;51:18–34. https://doi.org/10.1007/s13592-019-00701-z.
Article
CAS
Google Scholar
Kevill JL, de Souza FS, Sharples C, Oliver R, Schroeder DC, Martin SJ. DWV-A lethal to honey bees (Apis mellifera): a colony level survey of DWV variants (A, B, and C) in England, Wales, and 32 states across the US. Viruses. 2019;11:426. https://doi.org/10.3390/v11050426.
Article
PubMed Central
Google Scholar
Natsopoulou ME, McMahon DP, Doublet V, Frey E, Rosenkranz P, Paxton RJ. The virulent, emerging genotype B of deformed wing virus is closely linked to overwinter honeybee worker loss. Sci Rep. 2017;7:1–9. https://doi.org/10.1038/s41598-017-05596-3.
Article
CAS
Google Scholar
Tehel A, Vu Q, Bigot D, Gogol-döring A, Koch P, Jenkins C, et al. The two prevalent genotypes of an emerging equally low pupal mortality and equally high wing deformities in host honey bees. Viruses. 2019;11:114. https://doi.org/10.3390/v11020114.
Yue C, Genersch E. RT-PCR analysis of deformed wing virus in honey bees (Apis mellifera) and mites (Varroa destructor). J Gen Virol. 2005;86:3419-24. https://doi.org/10.1099/vir.0.81401-010.1099/vir.0.81401-0.
Möckel N, Gisder S, Genersch E. Horizontal transmission of deformed wing virus: pathological consequences in adult bees (Apis mellifera) depend on the transmission route. J Gen Virol. 2011;92:370–7. https://doi.org/10.1099/vir.0.025940-0.
Article
CAS
PubMed
Google Scholar
Mazzei M, Carrozza ML, Luisi E, Forzan M, Giusti M, Sagona S, et al. Infectivity of DWV associated to flower pollen: experimental evidence of a horizontal transmission route. PLoS ONE. 2014;9:1–16. https://doi.org/10.1371/journal.pone.0113448.
Article
CAS
Google Scholar
Chen Y, Evans J, Feldlaufer M. Horizontal and vertical transmission of viruses in the honey bee Apis mellifera. J Invertebr Pathol. 2006;92:152–9. https://doi.org/10.1016/j.jip.2006.03.010.
Article
PubMed
Google Scholar
Nazzi F, Milani N, Applicata B, Udine U. technique for reproduction of Varroa jacobsoni oud under laboratory conditions. Apidologie. 1994;25:579–84.
Article
Google Scholar
Piou V, Tabart J, Urrutia V, Hemptinne JL, Vétillard A. Impact of the phoretic phase on reproduction and damage caused by Varroa destructor (Anderson and Trueman) to its host, the European honey bee (Apis mellifera L.). PLoS One. 2016;11:1–15. https://doi.org/10.1371/journal.pone.0153482.
Article
Google Scholar
Piou V, Vétillard A. Varroa destructor rearing in laboratory conditions importance of foundress survival in doubly infested cells and reproduction of laboratory-born females. Apidologie. 2020;51:968–83. https://doi.org/10.1007/s13592-020-00775-0.
Zioni N, Soroker V, Chejanovsky N. Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee. Virology. 2011;417:106–12. https://doi.org/10.1016/j.virol.2011.05.009.
Article
CAS
PubMed
Google Scholar
Schurr F, Tison A, Militano L, Cheviron N, Sircoulomb F, Rivière M, et al. Validation of quantitative real-time RT-PCR assays for the detection of six honeybee viruses. J Virol Methods. 2019;270:70–8. https://doi.org/10.1016/j.jviromet.2019.04.020.
Article
CAS
PubMed
Google Scholar
Wickham H. ggplot2 elegant graphics for data analysis. Berlin: Springer; 2016.
Google Scholar
Norton AM, Remnant EJ, Tom J, Buchmann G, Blacquiere T, Beekman M. Adaptation to vector-based transmission in a honeybee virus. J Anim Ecol. 2021;90:2254-67. https://doi.org/10.1111/1365-2656.13493.
Yañez O, Chávez-galarza J, Tellgren-roth C, Pinto MA, Neumann P, de Miranda JR. The honeybee (Apis mellifera) developmental state shapes the genetic composition of the deformed wing virus-A quasispecies during serial transmission. Sci Rep. 2020;10:1–12. https://doi.org/10.1038/s41598-020-62673-w.
Article
CAS
Google Scholar
Piou V, Tabart J, Hemptinne JL, Vétillard A. Effect of pollen extract supplementation on the varroatosis tolerance of honey bee (Apis mellifera) larvae reared in vitro. Exp Appl Acarol. 2018;74:25–41. https://doi.org/10.1007/s10493-017-0198-7.
Article
CAS
PubMed
Google Scholar
Schöning C, Gisder S, Geiselhardt S, Kretschmann I, Bienefeld K, Hilker M, et al. Evidence for damage-dependent hygienic behaviour towards Varroa destructor-parasitised brood in the western honey bee Apis mellifera. J Exp Biol. 2012;215:264–71. https://doi.org/10.1242/jeb.062562.
Article
PubMed
Google Scholar
Vilarem C, Piou V, Vogelweith F, Vétillard A. Varroa destructor from the laboratory to the field: control, biocontrol and IPM perspectives—a review. Insects. 2021;12:800. https://doi.org/10.3390/insects12090800.
Wu Y, Dong X, Kadowaki T. Characterization of the copy number and variants of deformed wing virus (DWV) in the pairs of honey bee pupa and infesting Varroa destructor or Tropilaelaps mercedesae. Front Microbiol. 2017;8:1–10. https://doi.org/10.3389/fmicb.2017.01558.
Article
Google Scholar
Brutscher LM, Flenniken ML. RNAi and antiviral defense in the honey bee. J Immunol Res. 2015;2015:1–10. https://doi.org/10.1155/2015/941897.
Article
CAS
Google Scholar
Flenniken ML, Andino R. Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS ONE. 2013;8:1–16. https://doi.org/10.1371/journal.pone.0077263.
Article
CAS
Google Scholar
Marques JT, Imler JL. The diversity of insect antiviral immunity: insights from viruses. Curr Opin Microbiol. 2016;32:71–6. https://doi.org/10.1016/j.mib.2016.05.002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Prisco G, Annoscia D, Margiotta M, Ferrara R, Varricchio P, Zanni V, et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc Natl Acad Sci USA. 2016;113:3203–8. https://doi.org/10.1073/pnas.1523515113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen M, Yang X, Cox-Foster D, Cui L. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology. 2005;342:141–9. https://doi.org/10.1016/j.virol.2005.07.012.
Article
CAS
PubMed
Google Scholar
Kanbar G, Engels W. Ultrastructure and bacterial infection of wounds in honey bee (Apis mellifera) pupae punctured by Varroa mites. Parasitol Res. 2003;90:349–54. https://doi.org/10.1007/s00436-003-0827-4.
Article
CAS
PubMed
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakonyi T, Farkas R, Szendroi A, Dobos-Kovàcs M, Rusvai M. Detection of acute bee paralysis virus by RT-PCR in honey bee and Varroa destructor field samples: rapid screening of representative hungarian apiaries. Apidologie. 2002;33:63–74. https://doi.org/10.1051/apido.
Article
CAS
Google Scholar
Benjeddou M, Leat N, Allsopp M, Davison S. Detection of acute bee paralysis virus and black queen cell virus from honeybees by reverse transcriptase PCR. Appl Environ Microbiol. 2001;67:2384–7. https://doi.org/10.1128/AEM.67.5.2384-2387.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blanchard P, Ribière M, Celle O, Lallemand P, Schurr F, Olivier V, et al. Evaluation of a real-time two-step RT-PCR assay for quantitation of chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life stages of a symptomatic colony. J Virol Methods. 2007;141:7–13. https://doi.org/10.1016/j.jviromet.2006.11.021.
Article
CAS
PubMed
Google Scholar
Grabensteiner E, Ritter W, Carter MJ, Davison S, Pechhacker H, Kolodziejek J, et al. Sacbrood virus of the honeybee (Apis mellifera): rapid identification and phylogenetic analysis using reverse transcription-PCR. Clin Diagn Lab Immunol. 2001;8:93–104. https://doi.org/10.1128/CDLI.8.1.93-104.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar