Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14:668–75.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khosravi A, Yáñez A, Price JG, Chow A, Merad M, Goodridge HS, et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe. 2014;15:374–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.
Article
PubMed
CAS
Google Scholar
de Agüero MG, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296–302.
Article
Google Scholar
Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–9.
Article
PubMed
Google Scholar
Benoit JB, Vigneron A, Broderick NA, Wu Y, Sun JS, Carlson JR, et al. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife. 2017;6:e19535.
Article
PubMed
PubMed Central
Google Scholar
Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E, et al. Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Micobiol. 2012;12:S3.
Article
CAS
Google Scholar
Doudoumis V, Blow F, Saridaki A, Augustinos AA, Dyer NA, Goodhead IB, et al. Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Sci Rep. 2017;7:4699.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maltz MA, Weiss BL, O’Neill M, Wu Y, Aksoy S. OmpA-mediated biofilm formation is essential for commensal bacterium Sodalis glossinidius to colonize the tsetse fly gut. Appl Environ Microbiol. 2012;78:7760–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang J, Brelsfoard C, Wu Y, Aksoy S. Intercommunity effects on microbiome and GpSGHV density regulation in tsetse flies. J Invertebr Pathol. 2013;112:S32-9.
Article
PubMed
Google Scholar
Wang J, Weiss BL, Aksoy S. Tsetse fly microbiota: form and function. Front Cell Infect Microbiol. 2013;3:69.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schneider DI, Saarman N, Onyango MG, Hyseni C, Opiro R, Echodu R, et al. Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda. PLoS Negl Trop Dis. 2019;13:e0007340.
Article
PubMed
PubMed Central
CAS
Google Scholar
Son JH, Weiss BL, Schneider DI, Dera K-SM, Gstöttenmayer F, Opiro R, et al. Infection with endosymbiotic Spiroplasma disrupts tsetse (Glossina fuscipes fuscipes) metabolic and reproductive homeostasis. PLoS Pathog. 2021;17:e1009539.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abd-Alla AMM, Cousserans F, Parker AG, Jehle JA, Parker NJ, Vlak JM, et al. Genome analysis of a Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) reveals a novel large double-stranded circular DNA virus. J Virol. 2008;82:4595–611.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abd-Alla AM, Kariithi HM, Cousserans F, Parker NJ, Ince IA, Scully ED, et al. Comprehensive annotation of the Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach. J Gen Virol. 2016;97:1010–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Demirbas-Uzel G, Kariithi HM, Parker AG, Vreysen MJB, Mach RL, Abd-Alla AMM. Susceptibility of tsetse species to Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). Front Microbiol. 2018;9:701.
Article
PubMed
PubMed Central
Google Scholar
Meki I, Huditz H-I, Strunov A, Van Der Vlugt R, Kariithi HM, Rezaezapanah M, et al. Characterization and tissue tropism of newly identified iflavirus and negevirus in tsetse flies Glossina morsitans morsitans. Viruses 2021;13(12):2472.
Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27:514–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends Parasitol. 2015;31:315–23.
Article
PubMed
PubMed Central
Google Scholar
Dey R, Joshi AB, Oliveira F, Pereira L, Guimarães-Costa AB, Serafim TD, et al. Gut microbes egested during bites of infected sand flies augment severity of leishmaniasis via inflammasome-derived IL-1β. Cell Host Microbe. 2018;23:134-143.e6.
Article
PubMed
CAS
Google Scholar
Song X, Wang M, Dong L, Zhu H, Wang J. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis. PLoS Pathog. 2018;14:e1006899.
Article
PubMed
PubMed Central
Google Scholar
Rio RVM, Jozwick AKS, Savage AF, Sabet A, Vigneron A, Wu Y, et al. Mutualist-provisioned resources impact vector competency. mBio. 2019;10:e00018-19.
Article
PubMed
PubMed Central
CAS
Google Scholar
Michalkova V, Benoit JB, Weiss BL, Attardo GM, Aksoy S. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Appl Environ Microbiol. 2014;80:5844–53.
Article
PubMed
PubMed Central
Google Scholar
Michalkova V, Benoit JB, Attardo GM, Medlock J, Aksoy S. Amelioration of reproduction-associated oxidative stress in a viviparous insect is critical to prevent reproductive senescence. PLoS One. 2014;9:e87554.
Article
PubMed
PubMed Central
Google Scholar
Moloo SK, Kabata JM, Waweru F, Gooding RH. Selection of susceptible and refractory lines of Glossina morsitans centralis for Trypanosoma congolense infection and their susceptibility to different pathogenic Trypanosoma species. Med Vet Entomol. 1998;12:391–8.
Article
PubMed
CAS
Google Scholar
Farikou O, Thevenon S, Njiokou F, Allal F, Cuny G, Geiger A. Genetic diversity and population structure of the secondary symbiont of tsetse flies, Sodalis glossinidius, in sleeping sickness foci in Camerooon. PLoS Negl Trop Dis. 2011;5:e1281.
Article
PubMed
PubMed Central
Google Scholar
Soumana IH, Simo G, Njiokou F, Tchicaya B, Abd-Alla AMM, Cuny G, et al. The bacterial flora of tsetse fly midgut and its effect on trypanosome transmission. J Invertebr Pathol. 2013;112:S89-93.
Article
PubMed
Google Scholar
Aksoy E, Telleria E, Echodu R, Wu Y, Okedi LM, Weiss BL, et al. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol. 2014;80:4301–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Griffith BC, Weiss BL, Aksoy E, Mireji PO, Auma JE, Wamwiri FN, et al. Analysis of the gut-specific microbiome from field-captured tsetse flies, and its potential relevance to host trypanosome vector competence. BMC Microbiol. 2018;18:146.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O’Neill MB, et al. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLoS Pathog. 2019;15:e1007470.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leak SGA. Tsetse biology and ecology: their role in the epidemiology and control of trypanosomosis. Wallingford: CABI Publishing; 1998.
Book
Google Scholar
Simarro PP, Louis FJ, Jannin J. Sleeping sickness, forgotten illness: what are the impact in the field? MedTrop. 2003;63:231–5.
CAS
Google Scholar
Dyck VA, Hendrichs J, Robinson AS. Sterile insect: technique principles and practice in area-wide integrated pest management. 2nd ed. Boco Raton: CRC Press; 2021.
Book
Google Scholar
Feldmann U, Dyck VA, Mattioli R, Jannin J, Vreysen MJB. Impact of tsetse fly eradication programmes using the sterile insect technique. In: Dyck VA, Hendrichs JP, Robinson AS, editors. Sterile insect technique: principles and practice area-wide integrated pest management. 2nd ed. Boca Raton: CRC Press; 2021. p. 701–30.
Google Scholar
Vreysen MJB, Saleh KM, Ali MY, Abdulla AM, Zhu Z-R, Juma KG, et al. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol. 2000;93:123–35.
Article
PubMed
CAS
Google Scholar
Hendrichs MA, Wornoayporn V, Katsoyannos BI, Hendrichs JP. Quality control method to measure predator evasion in wild and mass-reared Mediterranean fruit flies (Diptera: Tephritidae). Fla Entomol. 2007;90:64–70.
Article
Google Scholar
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, et al. The insect pest control laboratory of the joint FAO/IAEA programme: ten years (2010–2020) of research and development, achievements and challenges in support of the sterile insect technique. Insects. 2021;12:346.
Article
PubMed
PubMed Central
Google Scholar
Attardo GM, Lohs C, Heddi A, Alam UH, Yildirim S, Aksoy S. Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity. J Insect Physiol. 2008;54:1236–42.
Belda E, Moya A, Bentley S, Silva FJ. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genom. 2010;11:449.
Article
Google Scholar
International Glossina Genome Initiative. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science. 2014;344:380–6.
Article
PubMed Central
CAS
Google Scholar
Abd-Alla AMM, Kariithi HM, Parker AG, Robinson AS, Kiflom M, Bergoin M, et al. Dynamics of the salivary gland hypertrophy virus in laboratory colonies of Glossina pallidipes (Diptera: Glossinidae). Virus Res. 2010;150:103–10.
Article
PubMed
CAS
Google Scholar
Aksoy S. Tsetse—A haven for microorganisms. Parasitol Today. 2000;16:114–8.
Article
PubMed
CAS
Google Scholar
Aksoy S, Weiss B, Attardo GM. Paratransgenesis applied for control of tsetse transmitted sleeping sickness. Transgenesis and the management of vector-borne disease (2008): 35-48.
Alam U, Medlok J, Brelsfoard C, Pais R, Lohs C, Balmand S, et al. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans. PLoS Pathog. 2011;7:e1002415.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doudoumis V, Alam U, Aksoy E, Abd-Alla AMM, Tsiamis G, Brelsfoard C, et al. Tsetse-Wolbachia symbiosis: comes of age and has great potential for pest and disease control. J Invertebr Pathol. 2013;112:S94-103.
Article
PubMed
Google Scholar
Lietze VU, Abd-Alla AMM, Vreysen MJB, Geden CJ, Boucias DG. Salivary gland hypertrophy viruses: a novel group of insect pathogenic viruses. Annu Rev Entomol. 2010;56:63–80.
Article
CAS
Google Scholar
Kariithi HM, Ahmadi M, Parker AG, Franz G, Ros VID, Haq I, et al. Prevalence and genetic variation of salivary gland hypertrophy virus in wild populations of the tsetse fly Glossina pallidipes from southern and eastern Africa. J Invertebr Pathol. 2013;112:S123-32.
Article
PubMed
Google Scholar
Abd-Alla AMM, Kariithi HM, Bergoin M. Managing pathogens in insect mass-rearing for the sterile insect technique, with the tsetse fly salivary gland hypertrophy virus as an example. In: Dyck VA, Hendrichs JP, Robinson AS, editors. Sterile insect technique: principles and practice area-wide integrated pest management. 2nd ed. Boca Raton: CRC Press; 2021. p. 317–54.
Chapter
Google Scholar
Jura WGZO, Otieno LH, Chimtawi MMB. Ultrastructural evidence for trans-ovum transmission of the DNA virus of tsetse, Glossina pallidipes (Diptera: Glossinidae). Curr Microbiol. 1989;18:1–4.
Article
Google Scholar
Sang RC, Jura WGZO, Otieno LH, Ogaja P. Ultrastructural changes in the milk gland of tsetse Glossina morsitans centralis (Diptera; Glissinidae) female infected by a DNA virus. J Invertebr Pathol. 1996;68:253–9.
Article
PubMed
CAS
Google Scholar
Sang RC, Jura WGZO, Otieno LH, Mwangi RW. The effects of a DNA virus infection on the reproductive potential of female tsetse flies, Glossina morsitans centralis and Glossina morsitans morsitans (Diptera: Glossinidae). Mem Inst Oswaldo Cruz. 1998;93:861–4.
Article
PubMed
CAS
Google Scholar
Jaenson TGT. Virus-like rods associated with salivary gland hyperplasia in tsetse, Glossina pallidipes. Trans R Soc Trop Med Hyg. 1978;72:234–8.
Article
PubMed
CAS
Google Scholar
Abd-Alla AMM, Cousserans F, Parker A, Bergoin M, Chiraz J, Robinson A. Quantitative PCR analysis of the salivary gland hypertrophy virus (GpSGHV) in a laboratory colony of Glossina pallidipes. Virus Res. 2009;139:48–53.
Article
PubMed
CAS
Google Scholar
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, et al. Interactions between tsetse endosymbionts and Glossina pallidipes salivary gland hypertrophy virus in Glossina hosts. Front Microbiol. 2021;12:1295.
Article
Google Scholar
Baker RD, Maudlin I, Milligan PJM, Molyneux DH, Welburn SC. The possible role of Rickettsia-like organisms in trypanosomiasis epidemiology. Parasitology. 1990;100:209–17.
Article
PubMed
Google Scholar
Soumana IH, Berthier D, Tchicaya B, Thevenon S, Njiokou F, Cuny G, et al. Population dynamics of Glossina palpalis gambiensis symbionts, Sodalis glossinidius, and Wigglesworthia glossinidia, throughout host-fly development. Infect Genet Evol. 2013;13:41–8.
Article
Google Scholar
Dennis JW, Durkin SM, Downie JEH, Hamill LC, Anderson NE, MacLeod ET. Sodalis glossinidius prevalence and trypanosome presence in tsetse from Luambe National Park, Zambia. Parasites & vectors. 2014;7:378.
Article
PubMed
PubMed Central
Google Scholar
Meki IK, Kariithi HM, Ahmadi M, Parker AG, Vreysen MJB, Vlak JM, et al. Hytrosavirus genetic diversity and eco-regional spread in Glossina species. BMC Microbiol. 2018;18:143.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ouedraogo GMS, Demirbas-Uzel G, Rayaisse J-B, Gimonneau G, Traore AC, Avgoustinos A, et al. Prevalence of trypanosomes, salivary gland hypertrophy virus and Wolbachia in wild populations of tsetse flies from West Africa. BMC Microbiol. 2018;18:153.
Article
PubMed
PubMed Central
CAS
Google Scholar
Demirbas-Uzel G, De Vooght L, Parker AG, Vreysen MJB, Mach RL, Van Den Abbeele J, et al. Combining paratransgenesis with SIT: impact of ionizing radiation on the DNA copy number of Sodalis glossinidius in tsetse flies. BMC Microbiol. 2018;18:160.
Article
PubMed
PubMed Central
CAS
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021. November 2021.
Baier T, Neuwirth E. Excel :: COM :: R. Comput Stat. 2007;22:91–108. November 2021.
Article
Google Scholar
RStudio Team. RStudio: integrated development environment for R. Boston: RStudio, PBC; 2022. November 2021.
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016. November 2021.
Sarkar D. Lattice: multivariate data visualization with R. Springer Science and Business Media; 2008.
Fox J, Weisberg S. An R companion to applied regression, Second Edition. Third. Thousand Oaks, CA: Sage; 2019. November 2021.
Arnold JB. ggthemes: extra themes, scales and geoms for “ggplot2”. R package version 4.2.4. 2021. November 2021.
Venables WN, Ripley BD. Modern Applied Statistics with S. Fourth. New York: Springer; 2002. November 2021.
Clarke KR, Gorley RN. Getting started with PRIMER v7. 2016. November 2021.
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Article
Google Scholar
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, et al. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol. 2019;20:187.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alam U, Hyseni C, Symula RE, Brelsfoard C, Wu Y, Kruglov O, et al. Implications of microfauna-host interactions for trypanosome transmission dynamics in Glossina fuscipes fuscipes in Uganda. Appl Env Microbiol. 2012;78:4627–37.
Article
CAS
Google Scholar
Hedges LM, Brownlie JC, O’Neill SL, Johnson KN. Wolbachia and virus protection in insects. Science. 2008;322:702.
Article
PubMed
CAS
Google Scholar
Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 2008;6:e1000002.
Article
PubMed
PubMed Central
Google Scholar
Johnson KN. The impact of Wolbachia on Virus infection in mosquitoes. Viruses. Multidisciplinary Digital Publishing Institute; 2015; 7:5705–17. Accessed 2 Aug 2020.
Parry R, Bishop C, De Hayr L, Asgari S. Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs. Virology. 2019; 528:89–100. Accessed 2 Aug 2020.
Parry R, Asgari S. Aedes Anphevirus: an insect-specific virus distributed worldwide in Aedes aegypti mosquitoes that has complex interplays with wolbachia and dengue virus infection in cells. J Virol. 2018;92:e00224-18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Altinli M, Lequime S, Atyame C, Justy F, Weill M, Sicard M. Wolbachia modulates prevalence and viral load of Culex pipiens densoviruses in natural populations. Mol Ecol. 2020;29:4000–13.
Article
PubMed
Google Scholar
Lu P, Bian G, Pan X, Xi Z. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop Dis. 2012;6:e1754.
Article
PubMed
PubMed Central
Google Scholar
Weiss BL, Wang J, Aksoy S. Tsetse immune system maturation requires the presence of obligate symbionts in larvae. PLoS Biol. 2011;9:e1000619.
Article
PubMed
PubMed Central
CAS
Google Scholar