Wen H, Vuitton L, Tuxun T, Li J, Vuitton DA, Zhang W, et al. Echinococcosis: advances in the 21st century. Clin Microbiol Rev. 2019;32:e00075–118.
Article
Google Scholar
Scholz T, Kuchta R, Brabec J. Broad tapeworms (Diphyllobothriidae), parasites of wildlife and humans: recent progress and future challenges. Int J Parasitol Parasites Wildl. 2019;9:359–69.
Article
Google Scholar
Kuchta R, Kołodziej-Sobocińska M, Brabec J, Młocicki D, Sałamatin R, Scholz T. Sparganosis (Spirometra) in Europe in the molecular era. Clin Infect Dis. 2021;72:882–90.
Article
Google Scholar
Li MW, Lin HY, Xie WT, Gao MJ, Huang ZW, Wu JP, et al. Enzootic sparganosis in Guangdong, People’s Republic of China. Emerg Infect Dis. 2009;15:1317–8.
Article
Google Scholar
Liu Q, Li MW, Wang ZD, Zhao GH, Zhu XQ. Human sparganosis, a neglected food borne zoonosis. Lancet Infect Dis. 2015;15:1226–35.
Article
Google Scholar
Cui J, Wang Y, Zhang X, Lin XM, Zhang HW, Wang ZQ, et al. A neglected risk for sparganosis: eating live tadpoles in central China. Infect Dis Poverty. 2017;6:8.
Article
Google Scholar
Cui J, Lin XM, Zhang HW, Xu BL, Wang ZQ. Sparganosis, Henan Province, Central China. Emerg Infect Dis. 2011;17:146–7.
Article
Google Scholar
Hong Q, Feng J, Liu H, Li X, Gong L, Yang Z, et al. Prevalence of Spirometra mansoni in dogs, cats, and frogs and its medical relevance in Guangzhou. China Int J Infect Dis. 2016;53:41–5.
Article
Google Scholar
Jeon HK, Eom KS. Mitochondrial DNA sequence variability of Spirometra species in Asian countries. Korean J Parasitol. 2019;57:481–7.
Article
Google Scholar
Yamasaki H, Sanpool O, Rodpai R, Sadaow L, Laummaunwai P, Un M, et al. Spirometra species from Asia: genetic diversity and taxonomic challenges. Parasitol Int. 2021;80:102181.
Article
Google Scholar
Kołodziej-Sobocińska M, Stojak J, Kondzior E, Ruczyńska I, Wojcik JM. Genetic diversity of two mitochondrial DNA genes in Spirometra erinaceieuropaei (Cestoda: Diphyllobothridae) from Poland. J Zool Syst Evol Res. 2019;57:764–77.
Article
Google Scholar
Zhang X, Cui J, Liu LN, Jiang P, Wang H, Qi X, et al. Genetic structure analysis of Spirometra erinaceieuropaei isolates from central and southern China. PLoS ONE. 2015;10:e0119295.
Article
Google Scholar
Zhang X, Wang H, Cui J, Jiang P, Lin ML, Zhang YL, et al. The phylogenetic diversity of Spirometra erinaceieuropaei isolates from southwest China revealed by multi genes. Acta Trop. 2016;156:108–14.
Article
Google Scholar
Zhang X, Hong X, Duan JY, Han LL, Hong ZY, Jiang P, et al. Development of EST-derived microsatellite markers to investigate the population structure of sparganum—the causative agent of zoonotic sparganosis. Parasitology. 2019;146:947–55.
Article
CAS
Google Scholar
Liu W, Tan L, Huang Y, Li WC, Liu YS, Yang LC. Prevalence and molecular characterization of Spirometra erinaceieuropaei spargana in snakes in Hunan Province. China J Helminthol. 2020;94:e131.
Article
CAS
Google Scholar
Gong T, Su X, Li F, He J, Chen S, Li W, et al. Epidemiology and genetic diversity of Spirometra tapeworm isolates from snakes in Hunan Province, China. Animals. 2022;12:1216.
Article
Google Scholar
Liu SX, Hou W, Zhang XY, Peng CJ, Yue BS, Fan ZX, et al. Identification and characterization of short tandem repeats in the tibetan macaque genome based on resequencing data. Zool Res. 2018;39:291–300.
Article
CAS
Google Scholar
Králová-Hromadová I, Minárik G, Bazsalovicsová E, Mikulíček P, Oravcová A, Pálková L, et al. Development of microsatellite markers in Caryophyllaeus laticeps (Cestoda: Caryophyllidea), monozoic fish tapeworm, using next-generation sequencing approach. Parasitol Res. 2015;114:721–6.
Article
Google Scholar
Brabec J, Scholz T, Štefka J. Development of polymorphic microsatellites for the invasive Asian fish tapeworm Schyzocotyle acheilognathi. Parasitol Int. 2018;67:341–3.
Article
Google Scholar
Bazsalovicsová E, Minárik G, Šoltys K, Radačovská A, Kuhn JA, Karlsbakk E, et al. Development of 14 microsatellite markers for zoonotic tapeworm Dibothriocephalus dendriticus (Cestoda: Diphyllobothriidea). Genes. 2020;11:782.
Article
Google Scholar
Umhang G, Grenouillet F, Bastid V, M’Rad S, Valot B, Oudni-M’Rad M, et al. Investigating the genetic diversity of Echinococcus granulosus sensu stricto with new microsatellites. Parasitol Res. 2018;117:2743–55.
Article
Google Scholar
Pajuelo MJ, Eguiluz M, Roncal E, Quiñones-García S, Clipman SJ, Calcina J, et al. Genetic variability of Taenia solium cysticerci recovered from experimentally infected pigs and from naturally infected pigs using microsatellite markers. PLoS Negl Trop Dis. 2017;11:e0006087.
Article
Google Scholar
Li L, Fang Z, Zhou J, Chen H, Hu Z, Gao L, et al. An accurate and efficient method for large-scale SSR genotyping and applications. Nucleic Acids Res. 2017;45:e88.
Article
CAS
Google Scholar
Ding S, Wang S, He K, Jiang M, Li F. Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects. BMC Genomics. 2017;18:848.
Article
Google Scholar
Lu Q, Hong Y, Li S, Liu H, Li H, Zhang J, et al. Genome-wide identification of microsatellite markers from cultivated peanut (Arachis hypogaea L.). BMC Genomics. 2019;20:799.
Article
Google Scholar
Maduna SN, Vivian-Smith A, Jónsdóttir ÓDB, Imsland AKD, Klütsch CFC, Nyman T, et al. Genome- and transcriptome-derived microsatellite loci in lumpfish Cyclopterus lumpus: molecular tools for aquaculture, conservation and fisheries management. Sci Rep. 2020;10:59.
Article
Google Scholar
Yang J, Zhang J, Han R, Zhang F, Mao A, Luo J, et al. Target SSR-seq: a novel SSR genotyping technology associate with perfect SSRs in genetic analysis of cucumber varieties. Front Plant Sci. 2019;10:531.
Article
Google Scholar
Campbell NR, Harmon SA, Narum SR. Genotyping-in-thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour. 2015;15:855–67.
Article
CAS
Google Scholar
Yanagida T, Matsuoka H, Kanai T, Nakao M, Ito A. Anomalous segmentation of Diphyllobothrium nihonkaiense. Parasitol Int. 2010;59:268–70.
Article
CAS
Google Scholar
Arrabal JP, Pérez MG, Arce LF, Kamenetzky L. First identification and molecular phylogeny of Sparganum proliferum from endangered felid (Panthera onca) and other wild definitive hosts in one of the regions with highest worldwide biodiversity. Int J Parasitol Parasites Wildl. 2020;13:142–9.
Article
Google Scholar
Liu SN, Su XY, Chen WQ, Yu JW, Li JR, Jiang P, et al. Transcriptome profiling of plerocercoid and adult developmental stages of the neglected medical tapeworm Spirometra erinaceieuropaei. Acta Trop. 2022;232:106483.
Article
CAS
Google Scholar
Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: a web server for microsatellite prediction. Bioinformatics. 2017;33:2583–5.
Article
CAS
Google Scholar
Yeh FC, Yang RC, Boyle T. Popgene version 1.31: Microsoft Window-based freeware for population genetic analysis. Edmonton: University of Alberta. 1999.
Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980;32:314–31.
CAS
Google Scholar
Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009;9:1322–32.
Article
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.
Article
CAS
Google Scholar
Bruvo R, Michiels NK, D’Souza TG, Schulenburg H. A simple method for calculation of microsatellite genotypes irrespective of ploidy level. Mol Ecol. 2004;13:2101–6.
Article
CAS
Google Scholar
Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.
Article
CAS
Google Scholar
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in excel. population genetic software for teaching and research—an update. Bioinformatic. 2012;28:2537–9.
Article
CAS
Google Scholar
Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8:e1002967.
Article
CAS
Google Scholar
Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, Davenport GF. Core hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics. 2009;10:243.
Article
Google Scholar
Carrel M, Patel J, Taylor SM, Janko M, Mwandagalirwa MK, Tshefu AK, et al. The geography of malaria genetics in the democratic republic of Congo: a complex and fragmented landscape. Soc Sci Med. 2015;133:233–41.
Article
Google Scholar
Gao D, Perry G. Species-area relationships and additive partitioning of diversity of native and nonnative herpetofauna of the West Indies. Ecol Evol. 2016;6:7742–62.
Article
Google Scholar
Nyman T, Papadopoulou E, Ylinen E, Wutke S, Michell CT, Sromek L, et al. DNA barcoding reveals different cestode helminth species in northern European marine and freshwater ringed seals. Int J Parasitol Parasites Wildl. 2021;15:255–61.
Article
Google Scholar
Peng LP, Cai CF, Zhong Y, Xu XX, Xian HL, Cheng FY, et al. Genetic analyses reveal independent domestication origins of the emerging oil crop Paeonia ostii, a tree peony with a long-term cultivation history. Sci Rep. 2017;7:5340.
Article
Google Scholar
Balloux F, Lugon-Moulin N. The estimation of population differentiation with microsatellite markers. Mol Ecol. 2002;11:155–65.
Article
Google Scholar
Schield DR, Scordato ESC, Smith CCR, Carter JK, Cherkaoui SI, Gombobaatar S, et al. Sex-linked genetic diversity and differentiation in a globally distributed avian species complex. Mol Ecol. 2021;30:2313–32.
Article
Google Scholar
Wang M, Du W, Tang R, Liu Y, Zou X, Yuan D, et al. Genomic history and forensic characteristics of Sherpa highlanders on the tibetan plateau inferred from high-resolution InDel panel and genome-wide SNPs. Genet. 2022;56:102633.
CAS
Google Scholar