Organization WH. Global vector control response 2017–2030. Geneva; 2017.
Organization WH. World Malaria Report. Geneva; 2021.
Benelli G, Mehlhorn H. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res. 2016;115:1747–54.
Article
Google Scholar
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.
Article
CAS
Google Scholar
Yang X, Quam MBM, Zhang T, Sang S. Global burden for dengue and the evolving pattern in the past 30 years. J Travel Med. 2021;28:1–11.
Article
Google Scholar
Organization WH. Vector-borne diseases 2022 [Available from: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.
Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.
Article
CAS
Google Scholar
Suresh Walia SS, Tripathi V, Sharma KK. Phytochemical biopesticides: some recent developments. Phytochem Rev. 2017;16:989–1007.
Article
Google Scholar
Falkowski M, Jahn-Oyac A, Odonne G, Flora C, Estevez Y, Toure S, et al. Towards the optimization of botanical insecticides research: Aedes aegypti larvicidal natural products in French Guiana. Acta Trop. 2020;201:105179.
Article
CAS
Google Scholar
Fenibo EO, Ijoma GN, Matambo T. Biopesticides in sustainable agriculture: a critical sustainable development driver governed by green chemistry principles. Front Sustain Food Syst. 2021;5.
Basnet P, Dhital R, Rakshit A, et al. Chapter 8—Biopesticides: a genetics, genomics, and molecular biology perspective. In: Rakshit A, Meena VS, Abhilash PC, Sarma BK, Singh HB, Fraceto L, et al., editors. Biopesticides. Swatson: Woodhead Publishing; 2022. p. 107–16.
Chapter
Google Scholar
Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43:155–76.
Article
CAS
Google Scholar
Fleming A. On the antibacterial action of cultures of a Penicillium with special reference to their use in the isolation of B. influenza. Br J Exp Pathol. 1929;10:226–36.
CAS
Google Scholar
Lacey LA. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc. 2007;23:133–63.
Article
CAS
Google Scholar
Carvalho KDS, Crespo MM, Araujo AP, da Silva RS, de Melo-Santos MAV, de Oliveira CMF, et al. Long-term exposure of Aedes aegypti to Bacillus thuringiensis svar. israelensis did not involve altered susceptibility to this microbial larvicide or to other control agents. Parasit Vectors. 2018;11:673.
Article
Google Scholar
Shen D, Nyawira KT, Xia A. New discoveries and applications of mosquito fungal pathogens. Curr Opin Insect Sci. 2020;40:111–6.
Article
Google Scholar
Accoti A, Engdahl CS, Dimopoulos G. Discovery of novel entomopathogenic fungi for mosquito-borne disease control. Front Fungal Biol. 2021;2:637234.
Article
Google Scholar
Valli M, Atanazio LCV, Monteiro GC, Coelho RR, Demarque DP, Andricopulo AD, et al. The potential of biologically active Brazilian plant species as a strategy to search for molecular models for mosquito control. Planta Med. 2021;87:6–23.
Article
CAS
Google Scholar
Ravi R, Zulkrnin NSH, Rozhan NN, Nik Yusoff NR, Mat Rasat MS, Ahmad MI, et al. Chemical composition and larvicidal activities of Azolla pinnata extracts against Aedes (Diptera:Culicidae). PLoS ONE. 2018;13:e0206982.
Article
Google Scholar
Kamaraj C, Rahuman AA, Bagavan A. Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res. 2008;103:325–31.
Article
CAS
Google Scholar
Sama W, Ajaiyeoba EO, Choudhary MI. Larvicidal properties of simalikalactone D from Quassia africana (Simaroubaceae) Baill and Baill, on the malaria vector Anopheles gambiae. Afr J Tradit Complement Altern Med. 2014;11:84–8.
Article
Google Scholar
de Carvalho GHF, de Andrade MA, de Araujo CN, Santos ML, de Castro NA, Charneau S, et al. Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors. Environ Sci Pollut Res Int. 2019;26:5514–23.
Article
Google Scholar
Elango G, Rahuman AA, Kamaraj C, Bagavan A, Zahir AA. Screening for feeding deterrent activity of herbal extracts against the larvae of malaria vector Anopheles subpictus Grassi. Parasitol Res. 2011;109:715–26.
Article
Google Scholar
Stalin A, Daniel Reegan A, Rajiv Gandhi M, Saravanan RR, Balakrishna K, Hesham AE, et al. Mosquitocidal efficacy of embelin and its derivatives against Aedes aegypti L. and Culex quinquefasciatus Say. (Diptera: Culicidae) and computational analysis of acetylcholinesterase 1 (AChE1) inhibition. Comput Biol Med. 2022;146:105535.
Article
CAS
Google Scholar
Silva RL, Demarque DP, Dusi RG, Sousa JPB, Albernaz LC, Espindola LS. Residual larvicidal activity of quinones against Aedes aegypti. Molecules. 2020;25:3978.
Article
CAS
Google Scholar
Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398.
Article
Google Scholar
Short SM, van Tol S, MacLeod HJ, Dimopoulos G. Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in Anopheles gambiae mosquito larvae. Sci Rep. 2018;8:8358.
Article
Google Scholar
Caragata EP, Otero LM, Carlson JS, BorhaniDizaji N, Dimopoulos G. A nonlive preparation of Chromobacterium sp. Panama (Csp_P) is a highly effective larval mosquito biopesticide. Appl Environ Microbiol. 2020;86:e00240-e320.
Article
CAS
Google Scholar
Saraiva RG, Fang J, Kang S, Anglero-Rodriguez YI, Dong Y, Dimopoulos G. Aminopeptidase secreted by Chromobacterium sp. Panama inhibits dengue virus infection by degrading the E protein. PLoS Negl Trop Dis. 2018;12:e0006443.
Article
Google Scholar
Saraiva RG, Huitt-Roehl CR, Tripathi A, Cheng YQ, Bosch J, Townsend CA, et al. Chromobacterium spp. mediate their anti-Plasmodium activity through secretion of the histone deacetylase inhibitor romidepsin. Sci Rep. 2018;8:6176.
Article
Google Scholar
Dahmana H, Raoult D, Fenollar F, Mediannikov O. Insecticidal activity of bacteria from larvae breeding site with natural larvae mortality: screening of separated supernatant and pellet fractions. Pathogens. 2020;9:486.
Article
CAS
Google Scholar
Marrone PG. Pesticidal natural products—status and future potential. Pest Manag Sci. 2019;75:2325–40.
CAS
Google Scholar
Demarque DP, Espindola LS. Challenges, advances and opportunities in exploring natural products to control arboviral disease vectors. Front Chem. 2021;9:779049.
Article
CAS
Google Scholar
Chen ST, Dou J, Temple R, Agarwal R, Wu KM, Walker S. New therapies from old medicines. Nat Biotechnol. 2008;26:1077–83.
Article
CAS
Google Scholar
Kuno G. Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains. J Med Entomol. 2010;47:957–71.
Article
Google Scholar
Hurd H, Taylor PJ, Adams D, Underhill A, Eggleston P. Evaluating the costs of mosquito resistance to malaria parasites. Evolution. 2005;59:2560–72.
CAS
Google Scholar
National Cancer Institute. Division of Cancer Treatment and Diagnosis. Developmental Therapeutic Program. Natural Product Open Repository. https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm#nps_set.
Bilyk O, Samborskyy M, Leadlay PF. The biosynthetic pathway to ossamycin, a macrocyclic polyketide bearing a spiroacetal moiety. PLoS ONE. 2019;14:e0215958.
Article
CAS
Google Scholar
Carr G, Seyedsayamdost MR, Chandler JR, Greenberg EP, Clardy J. Sources of diversity in bactobolin biosynthesis by Burkholderia thailandensis E264. Org Lett. 2011;13:3048–51.
Article
CAS
Google Scholar
Abbott WS. A method of computing the effectiveness of an insecticide. 1925. J Am Mosq Control Assoc. 1987;3:302–3.
CAS
Google Scholar
Schmitz H, Jubinski SD, Hooper IR, Crook KE Jr, Price KE, Lein J. Ossamycin, a new cytotoxic agent. J Antibiot (Tokyo). 1965;18:82–8.
CAS
Google Scholar
John UP, Nagley P. Amino acid substitutions in mitochondrial ATPase subunit 6 of Saccharomyces cerevisiae leading to oligomycin resistance. FEBS Lett. 1986;207:79–83.
Article
CAS
Google Scholar
Nagley P, Hall RM, Ooi BG. Amino acid substitutions in mitochondrial ATPase subunit 9 of Saccharomyces cerevisiae leading to oligomycin or venturicidin resistance. FEBS Lett. 1986;195:159–63.
Article
CAS
Google Scholar
Salomon AR, Voehringer DW, Herzenberg LA, Khosla C. Understanding and exploiting the mechanistic basis for selectivity of polyketide inhibitors of F(0)F(1)-ATPase. Proc Natl Acad Sci U S A. 2000;97:14766–71.
Article
CAS
Google Scholar
Wang T, Ma F, Qian HL. Defueling the cancer: ATP synthase as an emerging target in cancer therapy. Mol Ther Oncolytics. 2021;23:82–95.
Article
CAS
Google Scholar
Kirst HA, Mynderse JS, Martin JW, Baker PJ, Paschal JW, Rios Steiner JL, et al. Structure of the spiroketal-macrolide ossamycin. J Antibiot (Tokyo). 1996;49:162–7.
Article
CAS
Google Scholar
Duerkop BA, Varga J, Chandler JR, Peterson SB, Herman JP, Churchill ME, et al. Quorum-sensing control of antibiotic synthesis in Burkholderia thailandensis. J Bacteriol. 2009;191:3909–18.
Article
CAS
Google Scholar
Seyedsayamdost MR, Chandler JR, Blodgett JA, Lima PS, Duerkop BA, Oinuma K, et al. Quorum-sensing-regulated bactobolin production by Burkholderia thailandensis E264. Org Lett. 2010;12:716–9.
Article
CAS
Google Scholar
Kondo S, Horiuchi Y, Hamada M, Takeuchi T, Umezawa H. A new antitumor antibiotic, bactobolin produced by Pseudomonas. J Antibiot (Tokyo). 1979;32:1069–71.
Article
CAS
Google Scholar
Chandler JR, Truong TT, Silva PM, Seyedsayamdost MR, Carr G, Radey M, et al. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein. MBio. 2012;3:e00499-e512.
Article
CAS
Google Scholar
Amunts A, Fiedorczuk K, Truong TT, Chandler J, Greenberg EP, Ramakrishnan V. Bactobolin A binds to a site on the 70S ribosome distinct from previously seen antibiotics. J Mol Biol. 2015;427:753–5.
Article
CAS
Google Scholar
Kupchan SM, Komoda Y, Court WA, Thomas GJ, Smith RM, Karim A, et al. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc. 1972;94:1354–6.
Article
CAS
Google Scholar
Remillard S, Rebhun LI, Howie GA, Kupchan SM. Antimitotic activity of the potent tumor inhibitor maytansine. Science. 1975;189:1002–5.
Article
CAS
Google Scholar
Kirschning A, Harmrolfs K, Knobloch T. The chemistry and biology of the maytansinoid antitumor agents. C R Chim. 2008;11:1523–43.
Article
CAS
Google Scholar
Krop I, Winer EP. Trastuzumab emtansine: a novel antibody-drug conjugate for HER2-positive breast cancer. Clin Cancer Res. 2014;20:15–20.
Article
CAS
Google Scholar
Soares Rodrigues GC, Maia MDS, Silva Cavalcanti AB, Costa Barros RP, Scotti L, Cespedes-Acuna CL, et al. Computer-assisted discovery of compounds with insecticidal activity against Musca domestica and Mythimna separata. Food Chem Toxicol. 2021;147:111899.
Article
CAS
Google Scholar
Li W, Ding Y, Qi H, Liu T, Yang Q. Discovery of natural products as multitarget inhibitors of insect chitinolytic enzymes through high-throughput screening. J Agric Food Chem. 2021;69:10830–7.
Article
CAS
Google Scholar
Ranson H, Lissenden N. Insecticide resistance in African anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 2016;32:187–96.
Article
CAS
Google Scholar
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis. 2017;11:e0005625.
Article
Google Scholar
Tetreau G, Stalinski R, David JP, Despres L. Monitoring resistance to Bacillus thuringiensis subsp. israelensis in the field by performing bioassays with each Cry toxin separately. Mem Inst Oswaldo Cruz. 2013;108:894–900.
Article
Google Scholar
Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci. 2011;366:1987–98.
Article
Google Scholar
Ishizuka M, Fukasawa S, Masuda T, Sato J, Kanbayashi N, Takeuchi T, et al. Antitumor effect of bactobolin and its influence on mouse immune system and hematopoietic cells. J Antibiot (Tokyo). 1980;33:1054–62.
Article
CAS
Google Scholar
National Cancer Institute Screening Program Data Summary. Developmental Therapeutics Program. Bethesda, MD 20205. 1986. https://www.drugfuture.com/toxic/q75-q374.html.
Okumoto T, Kontani M, Hoshino H, Nakanishi M. Antitumor activity of newly isolated antibiotics, 3-dichloromethylactinobolins. J Pharmacobiodyn. 1980;3:177–82.
Article
CAS
Google Scholar
National Technical Information Service. Formerly U.S. clearinghouse for scientific & technical information. PB82–165507. Springfield, VA 22161. https://www.drugfuture.com/toxic/q75-q374.html.
HamdyBalba M, Casida JE. Synthesis of possible metabolites of methylcarbamate insecticide chemicals; hydroxyaryl and hydroxyalkylphenyl methylcarbamates. J Agric Food Chem. 1968;16:561–7.
Article
Google Scholar