Goater TM, Goater CP, Esch GW. Parasitism: the diversity and ecology of animal parasites. Cambridge: Cambridge University Press; 2013.
Google Scholar
Sures B, Nachev M. Environmental Parasitology. Encyclopedia of parasitology. 2015. p. 1–4.
Book
Google Scholar
Snieszko SF. The effects of environmental stress on outbreaks of infectious diseases of fishes. J Fish Biol. 1974;6:197–208.
Article
Google Scholar
Sindermann CJ. The use of pathological effects of pollutants in marine environmental monitoring programs. Rapp P-v Réun Cons Int Explor Mer. 1980;179:129–34.
Google Scholar
Möller H. Pollution and parasitism in the aquatic environment. Int J Parasitol. 1987;17:353–61.
Article
PubMed
Google Scholar
Khan RA, Thulin J. Influence of pollution on parasites of aquatic animals. Adv Parasitol. 1991;30:201–38.
Article
CAS
PubMed
Google Scholar
Poulin R. Toxic pollution and parasitism in freshwater fish. Parasitol Today. 1992;8:58–61.
Article
CAS
PubMed
Google Scholar
Overstreet RM. Parasitic diseases of fishes and their relationship with toxicants and other environmental factors. In: Raton B, editor. Pathobiology of marine and estuarine organisms. Boca Raton: CRC press; 1993. p. 111–56.
Google Scholar
MacKenzie K, Williams HH, Williams B, McVicar AH, Siddall R. Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Adv Parasitol. 1995;35:128–44.
Google Scholar
Lafferty KD. Environmental Parasitology: what can parasites tell us about human impacts on the environment? Parasitol Today. 1997;13:251–5.
Article
CAS
PubMed
Google Scholar
Sures B, Siddall R, Taraschewski H. Parasites as accumulation indicators of heavy metal pollution. Parasitol Today. 1999;15:16–21.
Article
CAS
PubMed
Google Scholar
Sures B. Environmental Parasitology: relevancy of parasites in monitoring environmental pollution. Trends Parasitol. 2004;20:170–7.
Article
CAS
PubMed
Google Scholar
Marcogliese DJ. Parasites of the superorganism: Are they indicators of ecosystem health? Int J Parasitol. 2005;35:705–16.
Article
PubMed
Google Scholar
Blanar CA, Munkittrick KR, Houlahan J, MacLatchy DL, Marcogliese DJ. Pollution and parasitism in aquatic animals: a meta-analysis of effect size. Aquat Toxicol. 2009;93:18–28.
Article
CAS
PubMed
Google Scholar
Vidal-Martínez VM, Pech D, Sures B, Purucker ST, Poulin R. Can parasites really reveal environmental impact? Trends Parasitol. 2010;26:44–51.
Article
PubMed
Google Scholar
Sures B. Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitology. 2003;126:53–60.
Article
CAS
Google Scholar
Sures B. Environmental parasitology. Interactions between parasites and pollutants in the aquatic environment. Parasite. 2008;15:434–8.
Article
CAS
PubMed
Google Scholar
Sures B. Host-parasite interactions in polluted environments. J Fish Biol. 2008;73:2133–42.
Article
Google Scholar
Nachev M, Sures B. Environmental Parasitology: parasites as accumulation bioindicators in the marine environment. J Sea Res. 2016;113:45–50.
Article
Google Scholar
Le Yen TT, Rijsdijk L, Sures B, Jan HA. Accumulation of persistent organic pollutants in parasites. Chemosphere. 2014;108:145–51.
Article
CAS
Google Scholar
Sures B, Siddall R. Pomphorhynchus laevis: the intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Exp Parasitol. 1999;93:66–72.
Article
CAS
PubMed
Google Scholar
Amiard-Triquet C, Amiard JC, Mouneyrac C. Aquatic ecotoxicology. London: Academic; 2015.
Google Scholar
Sures B, Taraschewski H, Jackwerth E. Lead accumulation in Pomphorhynchus laevis and its host. J Parasitol. 1994;80:355–7.
Article
CAS
PubMed
Google Scholar
Sures B, Taraschewski H. Cadmium concentrations in two adult acanthocephalans, Pomphorhynchus laevis and Acanthocephalus lucii, as compared with their fish hosts and cadmium and lead levels in larvae of A. lucii as compared with their crustacean host. Parasitol Res. 1995;81:494–7.
Article
CAS
PubMed
Google Scholar
Malek M, Haseli M, Mobedi I, Ganjali MR, MacKenzie K. Parasites as heavy metal bioindicators in the shark Carcharhinus dussumieri from the Persian Gulf. Parasitology. 2007;134:1053–6.
Article
CAS
PubMed
Google Scholar
Oluoch-Otiego J, Oyoo-Okoth E, Kiptoo KKG, Chemoiwa EJ, Ngugi CC, Simiyu G, et al. PCBs in fish and their cestode parasites in Lake Victoria. Environ Monit Assess. 2016;188:483.
Article
PubMed
CAS
Google Scholar
Nachev M, Schertzinger G, Sures B. Comparison of the metal accumulation capacity between the acanthocephalan Pomphorhynchus laevis and larval nematodes of the genus Eustrongylides sp. infecting barbel (Barbus barbus). Parasit Vectors. 2013;6:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amini Z, Pazooki J, Abtahi B, Shokri MR. Bioaccumulation of Zn and Cu in Chasar bathybius (Gobiidae) tissue and its nematode parasite Dichelyne minutus, southeast of the Caspian Sea. Iran Indian J Mar Sci. 2013;42:196–200.
CAS
Google Scholar
Starling JA. Feeding, nutrition and metabolism. In: Crompton DWT, Nickol BB, editors. Biology of the Acanthocephala. Cambridge: Cambridge University Press; 1985. p. 125–212.
Google Scholar
Tellez M, Merchant M. Biomonitoring heavy metal pollution using an aquatic apex predator, the American alligator, and its parasites. PLoS One. 2015;10, e0142522.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lotfy WM, Ezz AM, Hassan AAM. Bioaccumulation of some heavy metals in the liver flukes Fasciola hepatica and F. gigantica. Iran J Parasitol. 2013;8:552–8.
CAS
PubMed
PubMed Central
Google Scholar
Sures B, Jürges G, Taraschewski H. Relative concentrations of heavy metels in the parasites Ascaris suum (Nematoda) and Fasciola hepatica (Digenea) and their respective porcine and bovine definitive hosts. Int J Parasitol. 1998;28:1173–8.
Article
CAS
PubMed
Google Scholar
Chang ACG, Flores MJC. Morphology and viability of adult Fasciola gigantica (giant liver flukes) from Philippine carabaos (Bubalus bubalis) upon in vitro exposure to lead. Asian Pac J Trop Biomed. 2015;5:493–6.
Article
Google Scholar
Qian G, Pin N. Lead content in the monogenean, Ancyrocephalus mogurndae and in different organs of its host, the mandarin fish, Siniperca chuatsi. China Env Sci. 2000;20:233–6.
Google Scholar
Torres J, Eira C, Miquel J, Foronda P, Feliu C. Cadmium and lead concentrations in Moniliformis moniliformis (Acanthocephala) and Rodentolepis microstoma (Cestoda), and in their definitive hosts, Rattus rattus and Mus domesticus in El Hierro (Canary Archipelago, Spain). Acta Parasitol. 2011;56:320–4.
Article
CAS
Google Scholar
Sures B, Franken M, Taraschewski H. Element concentrations in the archiacanthocephalan Macracanthorhynchus hirudinaceus compared with those in the porcine definitive host from a slaughterhouse in La Paz, Bolivia. Int J Parasitol. 2000;30:1071–6.
Article
CAS
PubMed
Google Scholar
Sures B, Jürges G, Taraschewski H. Accumulation and distribution of lead in the archiacanthocephalan Moniliformis moniliformis from experimentally infected rats. Parasitology. 2000;121:427–33.
Article
CAS
PubMed
Google Scholar
Sures B, Reimann N. Analysis of trace metals in the Antarctic host-parasite system Notothenia coriiceps and Aspersentis megarhynchus (Acanthocephala) caught at King George Island, South Shetland Islands. Polar Biol. 2003;26:680–6.
Article
Google Scholar
Cobelo-García A, Filella M, Croot P, Frazzoli C, Du Laing G, Ospina-Alvarez N, et al. COST action TD1407: network on technology-critical elements (NOTICE)—from environmental processes to human health threats. Environ Sci Pollut Res. 2015;22:15188–94.
Article
Google Scholar
Sures B, Thielen F, Baska F, Messerschmidt J, Von Bohlen A. The intestinal parasite Pomphorhynchus laevis as a sensitive accumulation indicator for the platinum group metals Pt, Pd, and Rh. Environ Res. 2005;98:83–8.
Article
CAS
PubMed
Google Scholar
Zimmermann S, Von Bohlen A, Messerschmidt J, Sures B. Accumulation of the precious metals platinum, palladium and rhodium from automobile catalytic converters in Paratenuisentis ambiguus as compared with its fish host, Anguilla anguilla. J Helminthol. 2005;79:85–9.
Article
CAS
PubMed
Google Scholar
Zimmermann S, Messerschmidt J, Von Bohlen A, Sures B. Uptake and bioaccumulation of platinum group metals (Pd, Pt, Rh) from automobile catalytic converter materials by the zebra mussel (Dreissena polymorpha). Environ Res. 2005;98:203–9.
Article
CAS
PubMed
Google Scholar
Gabrashanska M, Nedeva I. Content of heavy metals in the system fish-cestodes. Parassitologia. 1996;38:58.
Google Scholar
Turcekova L, Hanzelova V. Concentrations of Cd, As and Pb in non-infected and infected Perca fluviatilis with Proteocephalus percae. Helmintologia. 1999;36:31.
Google Scholar
Sures B, Dezfuli BS, Krug HF. The intestinal parasite Pomphorhynchus laevis (Acanthocephala) interferes with the uptake and accumulation of lead (210Pb) in its fish host chub (Leuciscus cephalus). Int J Parasitol. 2003;33:1617–22.
Article
CAS
PubMed
Google Scholar
Oyoo-Okoth E, Wim A, Osano O, Kraak MH, Ngure V, Makwali J, et al. Use of the fish endoparasite Ligula intestinalis (L., 1758) in an intermediate cyprinid host (Rastreneobola argentea) for biomonitoring heavy metal contamination in Lake Victoria, Kenya. Lakes Reserv Res Manag. 2010;15:63–73.
Article
CAS
Google Scholar
Le YTT, Nachev M, Grabner D, Hendriks AJ, Sures B. Development and validation of a biodynamic model for mechanistically predicting metal accumulation in fish-parasite systems. PLoS One. 2016;11, e0161091.
Article
PubMed
PubMed Central
Google Scholar
Livingstone DR, Förlin L, George SG. Molecular biomarkers and toxic consequences of impact by organic pollution in aquatic organisms. In: Suthcliffe DW, editor. Water quality and stress indicators in marine and freshwater systems: Linking levels of organization. Ambleside: Freshwater Biological Association; 1994. p. 154–71.
Google Scholar
Forbes VE, Palmqvist A, Bach L. The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem. 2006;25:272–80.
Article
CAS
PubMed
Google Scholar
Binelli A, Della Torre C, Magni S, Parolini M. Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review. Env Pollut. 2015;196:386–403.
Article
CAS
Google Scholar
Amoozadeh E, Malek M, Rashidinejad R, Nabavi SM, Karbassi MR, Ghayoumi R, et al. Marine organisms as heavy metal bioindicators in the Persian Gulf and the Gulf of Oman. Environ Sci Pollut R. 2014;21:2386–95.
Article
CAS
Google Scholar
Huang GY, Liu YS, Liang YQ, Shi WJ, Hu LX, Tian F, et al. Multi-biomarker responses as indication of contaminant effects in Gambusia affinis from impacted rivers by municipal effluents. Sci Total Env. 2016;563:273–81.
Article
CAS
Google Scholar
Marcogliese DJ, Pietrock M. Combined effects of parasites and contaminants on animal health: parasites do matter. Trends Parasitol. 2011;27:123–30.
Article
PubMed
Google Scholar
Le TTY, Zimmermann S, Sures B. How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure? Environ Pollut. 2016;212:257–68.
Article
CAS
PubMed
Google Scholar
Morley NJ, Lewis JW, Hoole D. Pollutant-induced effects on immunological and physiological interactions in aquatic host-trematode systems: implications for parasite transmission. J Helminthol. 2006;80:137–49.
Article
CAS
PubMed
Google Scholar
Sures B. How parasitism and pollution affect the physiological homeostasis of aquatic hosts. J Helminthol. 2006;80:151–7.
Article
CAS
PubMed
Google Scholar
Morley NJ. Interactive effects of infectious diseases and pollution in aquatic molluscs. Aquat Toxicol. 2010;96:27–36.
Article
CAS
PubMed
Google Scholar
Sures B, Radszuweit H. Pollution induced heat shock protein expression in the amphipod Gammarus roeseli is affected by larvae of Polymorphus minutus (Acanthocephala). J Helminthol. 2007;81:191–7.
Article
CAS
PubMed
Google Scholar
Gismondi E, Beisel J-N, Cossu-Leguille C. Polymorphus minutus affects antitoxic responses of Gammarus roeseli exposed to cadmium. PLoS One. 2012;7, e41475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ewald PW. The evolution of virulence: a unifying link between Parasitology and ecology. J Parasitol. 1995;81:659–69.
Article
CAS
PubMed
Google Scholar
Martínez-Álvarez RM, Morales AE, Sanz A. Antioxidant defenses in fish: biotic and abiotic factors. Rev Fish Biol Fish. 2005;15:75–88.
Article
Google Scholar
Gismondi E, Cossu-Leguille C, Beisel J-N. Does the acanthocephalan parasite Polymorphus minutus modify the energy reserves and antitoxic defences of its intermediate host Gammarus roeseli? Parasitology. 2012;139:1054–61.
Article
CAS
PubMed
Google Scholar
Chen HY, Grabner DS, Nachev M, Shih SH, Sures B. Effect of the acanthocephalan Polymorphus minutus and the microsporidian Dictyocoela duebenum on energy reserves and stress response of cadmium exposed Gammarus fossarum. PeerJ. 2015;3:e1353.
Frank SN, Godehardt S, Nachev M, Trubiroha A, Kloas W, Sures B. Influence of the cestode Ligula intestinalis and the acanthocephalan Polymorphus minutus on levels of heat shock proteins (HSP70) and metallothioneins in their fish and crustacean intermediate hosts. Env Pollut. 2013;180:173–9.
Article
CAS
Google Scholar
Baudrimont M, de Montaudouin X, Palvadeau A. Impact of digenean parasite infection on metallothionein synthesis by the cockle (Cerastoderma edule): a multivariate field monitoring. Mar Pollut Bull. 2006;52:494–502.
Article
CAS
PubMed
Google Scholar
Baudrimont M, de Montaudouin X. Evidence of an altered protective effect of metallothioneins after cadmium exposure in the digenean parasite-infected cockle (Cerastoderma edule). Parasitology. 2007;134:237–45.
Article
CAS
PubMed
Google Scholar
Kloas W, Urbatzka R, Opitz R, Würtz S, Behrends T, Hermelink B, et al. Endocrine disruption in aquatic vertebrates. Ann NY Acad Sci. 2009;1163:187–200.
Article
CAS
PubMed
Google Scholar
Segner H. Developmental, reproductive, and demographic alterations in aquatic wildlife: establishing causality between exposure to endocrine-active compounds (EACs) and effects. Acta Hydrochim Hydrobiol. 2005;33:17–26.
Article
CAS
Google Scholar
Rodgers-Gray TP, Smith JE, Ashcroft AE, Isaac RE, Dunn AM. Mechanisms of parasite-induced sex reversal in Gammarus duebeni. Int J Parasitol. 2004;34:747–53.
Article
CAS
PubMed
Google Scholar
Terry RS, Smith JE, Sharpe RG, Rigaud T, Littlewood DTJ, Ironside JE, et al. Widespread vertical transmission and associated host sex-ratio distortion within the eukaryotic phylum Microspora. Proc R Soc B Biol Sci. 2004;271:1783–9.
Article
Google Scholar
Hecker M, Karbe L. Parasitism in fish - An endocrine modulator of ecological relevance? Aquat Toxicol. 2005;72:195–207.
Article
CAS
PubMed
Google Scholar
Morley NJ. Parasitism as a source of potential distortion in studies on endocrine disrupting chemicals in molluscs. Mar Pollut Bull. 2006;52:1330–2.
Article
CAS
PubMed
Google Scholar
Morley NJ. Environmental risk and toxicology of human and veterinary waste pharmaceutical exposure to wild aquatic host-parasite relationships. Environ Toxicol Pharmacol. 2009;27:161–75.
Article
CAS
PubMed
Google Scholar
Arme C, Owen RW. Occurrence and pathology of Ligula intestinalis infections in British fishes. J Parasitol. 1968;54:272–80.
Article
CAS
PubMed
Google Scholar
Arme C. Ligula intestinalis: Interactions with the pituitary-gonadal axis of its fish host. J Helminthol. 1997;71:83–4.
Article
Google Scholar
Carter V, Pierce R, Dufour S, Arme C, Hoole D. The tapeworm Ligula intestinalis (Cestoda: Pseudophyllidea) inhibits LH expression and puberty in its teleost host, Rutilus rutilus. Reproduction. 2005;130:939–45.
Article
CAS
PubMed
Google Scholar
Trubiroha A, Wuertz S, Frank SN, Sures B, Kloas W. Expression of gonadotropin subunits in roach (Rutilus rutilus, Cyprinidae) infected with plerocercoids of the tapeworm Ligula intestinalis (Cestoda). Int J Parasitol. 2009;39:1465–73.
Article
CAS
PubMed
Google Scholar
Trubiroha A, Kroupova H, Wuertz S, Frank SN, Sures B, Kloas W. Naturally-induced endocrine disruption by the parasite Ligula intestinalis (Cestoda) in roach (Rutilus rutilus). Gen Comp Endocrinol. 2010;166:234–40.
Article
CAS
PubMed
Google Scholar
Trubiroha A, Kroupova H, Frank SN, Sures B, Kloas W. Inhibition of gametogenesis by the cestode Ligula intestinalis in roach (Rutilus rutilus) is attenuated under laboratory conditions. Parasitology. 2011;138:648–59.
Article
CAS
PubMed
Google Scholar
Sanchez-Ramirez C, Vidal-Martínez VM, Aguirre-Macedo ML, Rodriguez-Canul RP, Gold-Bouchot G, Sures B. Cichlidogyrus sclerosus (Monogenea: Ancyrocephalinae) and its host, the Nile tilapia (Oreochromis niloticus), as bioindicators of chemical pollution. J Parasitol. 2007;93:1097–106.
Article
CAS
PubMed
Google Scholar
Bichet C, Scheifler R, Cœurdassier M, Julliard R, Sorci G, Loiseau C. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS One. 2013;8, e53866.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marcogliese DJ, Dautremepuits C, Gendron AD, Fournier M. Interactions between parasites and pollutants in yellow perch (Perca flavescens) in the St. Lawrence River, Canada: Implications for resistance and tolerance to parasites. Can J Zool. 2010;88:247–58.
Article
CAS
Google Scholar
Sánchez MI, Pons I, Martínez-Haro M, Taggart MA, Lenormand T, Green AJ. When parasites are good for health: Cestode parasitism increases resistance to arsenic in brine shrimps. PLoS Pathog. 2016;12:1–19.
Article
CAS
Google Scholar
Heinonen J, Kukkonen JVK, Holopainen IJ. Temperature and parasite-induced changes in toxicity and lethal body burdens of pentachlorophenol in the freshwater clam Pisidium amnicum. Env Toxicol Chem. 2001;20:2778–84.
Article
CAS
Google Scholar
McCahon CP, Brown AF, Pascoe D. The effect of the acanthocephalan Pomphorhynchus laevis (Muller 1776) on the acute toxicity of cadmium to its intermediate host, the amphipod Gammarus pulex (L.). Arch Environ Contam Toxicol. 1988;17:239–43.
Article
CAS
Google Scholar
Brown AF, Pascoe D. Parasitism and host sensitivity to cadmium: an acanthocephalan infection of the freshwater amphipod Gammarus pulex. J Appl Ecol. 1989;26:473–87.
Article
CAS
Google Scholar
Gismondi E, Cossu-Leguille C, Beisel JN. Acanthocephalan parasites: help or burden in gammarid amphipods exposed to cadmium? Ecotoxicology. 2012;21:1188–93.
Article
CAS
PubMed
Google Scholar
Sparkes TC, Keogh DP, Pary RA. Energetic costs of mate guarding behavior in male stream-dwelling isopods. Oecologia. 1996;106:166–71.
Article
Google Scholar
Gheorgiu C, Marcogliese DJ, Scott M. Concentration-dependent effects of waterborne zinc on population dynamics of Gyrodactylus turnbulli (Monogenea) on isolated guppies (Poecilia reticulata). Parasitology. 2006;132:225–32.
Marcogliese DJ, Brambilla LG, Gagné F, Gendron AD. Joint effects of parasitism and pollution on oxidative stress biomarkers in yellow perch Perca flavescens. Dis Aquat Organ. 2005;63:77–84.
Article
CAS
PubMed
Google Scholar
Thilakaratne IDSIP, McLaughlin JD, Marcogliese DJ. Effects of pollution and parasites on biomarkers of fish health in spottail shiners Notropis hudsonius (Clinton). J Fish Biol. 2007;71:519–38.
Article
Google Scholar
Marcogliese DJ, King KC, Salo HM, Fournier M, Brousseau P, Spear P, et al. Combined effects of agricultural activity and parasites on biomarkers in the bullfrog, Rana catesbeiana. Aquat Toxicol. 2009;91:126–34.
Koprivnikar J. Interactions of environmental stressors impact survival and development of parasitized larval amphibians. Ecol Appl. 2010;20:2263–72.
Article
CAS
PubMed
Google Scholar
Pietrock M, Marcogliese DJ. Free-living endohelminth stages: at the mercy of environmental conditions. Trends Parasitol. 2003;19:293–9.
Article
PubMed
Google Scholar
Koprivnikar J, Forbes MR, Baker RL. Contaminant effects on host-parasite interactions: Atrazine, frogs, and trematodes. Environ Toxicol Chem. 2007;26:2166–70.
Article
CAS
PubMed
Google Scholar
Rohr JR, Raffel TR, Sessions SK, Hudson PJ. Understanding the net effects of pesticides on amphibian trematode infections. Ecol Appl. 2008;18:1743–53.
Article
PubMed
Google Scholar
Koprivnikar J, Forbes MR, Baker RL. Effects of atrazine on cercarial longevity, activity, and infectivity. J Parasitol. 2006;92:306–11.
Article
CAS
PubMed
Google Scholar
Hua J, Buss N, Kim J, Orlofske SA, Hoverman JT. Population-specific toxicity of six insecticides to the trematode Echinoparyphium sp. Parasitology. 2016;143:542–50.
Article
CAS
PubMed
Google Scholar
Raffel TR, Sheingold JL, Rohr JR. Lack of pesticide toxicity to Echinostoma trivolvis eggs and miracidia. J Parasitol. 2009;95:1548–51.
Article
CAS
PubMed
Google Scholar
Pietrock M, Goater CP. Infectivity of Ornithodiplostomum ptychocheilus and Posthodiplostomum minimum (Trematoda: Diplostomidae) cercariae following exposure to cadmium. J Parasitol. 2005;91:854–6.
Article
CAS
PubMed
Google Scholar
Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. Ecohealth. 2007;4:125–34.
Article
Google Scholar
Hanlon SM, Parris MJ. The impact of pesticides on the pathogen Batrachochytrium dendrobatidis independent of potential hosts. Arch Environ Contam Toxicol. 2012;63:137–43.
Article
CAS
PubMed
Google Scholar
Johnson PTJ, Chase JM, Dosch KL, Hartson RB, Gross JA, Larson DJ, et al. Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci USA. 2007;104:15781–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Evans NA. Effect of copper and zinc upon the survival and infectivity of Echinoparyphium recurvatum cercariae. Parasitology. 1982;85:295–303.
Article
CAS
Google Scholar
Evans NA. Effects of copper and zinc on the life cycle of Notocotylus attenuatus (Digenea: Notocotylidae). Int J Parasitol. 1982;12:363–9.
Article
CAS
Google Scholar
King CL, Higashi GI. Schistosoma mansoni: Silver ion (Ag+) stimulates and reversibly inhibits lipid-induced cercarial penetration. Exp Parasitol. 1992;75:31–9.
Article
CAS
PubMed
Google Scholar
Abd Allah AT, Wanas MQ, Thompson SN. The effects of lead, cadmium, and mercury on the mortality and infectivity of Schistosoma mansoni cercariae. J Parasitol. 1996;82:1024–6.
Article
CAS
PubMed
Google Scholar
Morley NJ, Crane M, Lewis JW. Toxicity of cadmium and zinc to miracidia of Schistosoma mansoni. Parasitology. 2001;122:81–5.
Article
CAS
PubMed
Google Scholar
Cheng Y, Chen X, Song W, Kong Z, Li P, Liu Y. Contribution of silver ions to the inhibition of infectivity of Schistosoma japonicum cercariae caused by silver nanoparticles. Parasitology. 2013;140:617–25.
Article
CAS
PubMed
Google Scholar
Borcherding J, Wolf J. The influence of suspended particles on the acute toxicity of 2-chloro-4-nitro-aniline, cadmium, and pentachlorophenol on the valve movement response of the zebra mussel (Dreissena polymorpha). Arch Environ Contam Toxicol. 2001;40:497–504.
Article
CAS
PubMed
Google Scholar
Poulin R. The functional importance of parasites in animal communities: Many roles at many levels? Int J Parasitol. 1999;29:903–14.
Article
CAS
PubMed
Google Scholar
Marcogliese DJ. Parasites: Small players with crucial roles in the ecological theater. Ecohealth. 2004;1:151–64.
Article
Google Scholar
Costanza R, Mageau M. What is a healthy ecosystem? Aquat Ecol. 1999;33:105–15.
Article
Google Scholar
Hudson PJ, Dobson AP, Lafferty KD. Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol. 2006;21:381–5.
Article
PubMed
Google Scholar
Khalil M, Furness DN, Zholobenko V, Hoole D. Effect of tapeworm parasitisation on cadmium toxicity in the bioindicator copepod, Cyclops strenuus. Ecol Indic. 2014;37:21–6.
Article
CAS
Google Scholar
Gilbert BM, Avenant-Oldewage A. Effects of altered water quality and trace elements on the infection variables of Paradiplozoon ichthyoxanthon (Monogenea: Diplozoidae) from two sites in the Vaal River system, South Africa. Acta Parasitol. 2016;61:52–62.
Article
PubMed
Google Scholar
Gilbert BM, Avenant-Oldewage A. Hatchability and survival of oncomiracidia of Paradiplozoon ichthyoxanthon (Monogenea: Diplozoidae) exposed to aqueous aluminium. Parasit Vectors. 2016;9:420.
Article
PubMed
PubMed Central
Google Scholar
Blanar CA, MacLatchy DL, Kieffer JD, Munkittrick KR. Exposure to a mixture of zinc and copper decreases survival and fecundity of Discocotyle sagittata (Leuckart) parasitizing juvenile Atlantic salmon, Salmo salar L. Bull Environ Contam Toxicol. 2010;84:692–7.
Article
CAS
PubMed
Google Scholar
Gheorghiu C, Cable J, Marcogliese DJ, Scott ME. Effects of waterborne zinc on reproduction, survival and morphometrics of Gyrodactylus turnbulli (Monogenea) on guppies (Poecilia reticulata). Int J Parasitol. 2007;37:375–81.
Article
CAS
PubMed
Google Scholar
Marcogliese DJ. Implications of climate change for parasitism of animals in the aquatic environment. Can J Zool. 2001;79:1331–52.
Article
Google Scholar
Gérard C, Carpentier A, Paillisson JM. Long-term dynamics and community structure of freshwater gastropods exposed to parasitism and other environmental stressors. Freshw Biol. 2008;53:470–84.
Article
Google Scholar
Shea J, Kersten GJ, Puccia CM, Stanton AT, Stiso SN, Helgeson ES, et al. The use of parasites as indicators of ecosystem health as compared to insects in freshwater lakes of the Inland Northwest. Ecol Indic. 2012;13:184–8.
Google Scholar
Huspeni TC, Lafferty KD. Using larval trematodes that parasitize snails to evaluate a saltmarsh restoration project. Ecol Appl. 2004;14:795–804.
Article
Google Scholar
Hechinger RF, Lafferty KD. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts. Proc R Soc B Biol Sci. 2005;272:1059–66.
Article
Google Scholar
Nachev M, Sures B. The endohelminth fauna of barbel (Barbus barbus) correlates with water quality of the Danube River in Bulgaria. Parasitology. 2009;136:545–52.
Article
CAS
PubMed
Google Scholar
Chapman JM, Marcogliese DJ, Suski CD, Cooke SJ. Variation in parasite communities and health indices of juvenile Lepomis gibbosus across a gradient of watershed land-use and habitat quality. Ecol Indic. 2015;57:564–72.
Article
Google Scholar
Pérez-del Olmo A, Raga JA, Kostadinova A, Fernández M. Parasite communities in Boops boops (L.) (Sparidae) after the Prestige oil-spill: Detectable alterations. Mar Pollut Bull. 2007;54:266–76.
Article
PubMed
CAS
Google Scholar
Blanar CA, Hewitt M, McMaster M, Kirk J, Wang Z, Norwood W, et al. Parasite community similarity in Athabasca River trout-perch (Percopsis omiscomaycus) varies with local-scale land use and sediment hydrocarbons, but not distance or linear gradients. Parasitol Res. 2016;115:3853–66.
Article
CAS
PubMed
Google Scholar
Marcogliese DJ, Gendron AD, Plante C, Fournier M, Cyr D. Parasites of spottail shiners (Notropis hudsonius) in the St. Lawrence River: Effects of municipal effluents and habitat. Can J Zool. 2006;84:1461–81.
Article
CAS
Google Scholar
Marcogliese DJ, Gendron AD, Cone DK. Impact of municipal effluents and hydrological regime on myxozoan parasite communities of fish. Int J Parasitol. 2009;39:1345–51.
Article
CAS
PubMed
Google Scholar
Marcogliese DJ, Locke SA, Gélinas M, Gendron AD. Variation in parasite communities in spottail shiners (Notropis hudsonius) linked with precipitation. J Parasitol. 2016;102:27–36.
Article
PubMed
Google Scholar
Blanar CA, Marcogliese DJ, Couillard CM. Natural and anthropogenic factors shape metazoan parasite community structure in mummichog (Fundulus heteroclitus) from two estuaries in New Brunswick, Canada. Folia Parasitol. 2011;58:240–8.
Article
CAS
PubMed
Google Scholar
Rohr JR, McCoy KA. A qualitative meta-analysis reveals consistent effects of atrazine on freshwater fish and amphibians. Environ Health Perspect. 2010;118:20–32.
Article
CAS
PubMed
Google Scholar
Rohr JR, Mccoy KA. Preserving environmental health and scientific credibility: A practical guide to reducing conflicts of interest. Conserv Lett. 2010;3:143–50.
Article
Google Scholar
Blaustein AR, Johnson PTJ. Explaining frog deformities. Sci Am. 2003;288:60–5.
Article
PubMed
Google Scholar
Johnson PTJ, Chase JM. Parasites in the food web: Linking amphibian malformations and aquatic eutrophication. Ecol Lett. 2004;7:521–6.
Article
Google Scholar
Koprivnikar J, Baker RL, Forbes MR. Environmental factors influencing trematode prevalence in grey tree frog (Hyla versicolor) tadpoles in southern Ontario. J Parasitol. 2006;92:997–1001.
Article
PubMed
Google Scholar
Koprivnikar J, Baker RL, Forbes MR. Environmental factors influencing community composition of gastropods and their trematode parasites in southern Ontario. J Parasitol. 2007;93:992–8.
Article
PubMed
Google Scholar
King KC, McLaughlin JD, Gendron AD, Pauli BD, Giroux I, Rondeau B, et al. Impacts of agriculture on the parasite communities of northern leopard frogs (Rana pipiens) in southern Quebec, Canada. Parasitology. 2007;134:2063–80.
CAS
PubMed
Google Scholar
King KC, Daniel Mclaughlin J, Boily M, Marcogliese DJ. Effects of agricultural landscape and pesticides on parasitism in native bullfrogs. Biol Conserv. 2010;143:302–10.
Article
Google Scholar
Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, et al. Agrochemicals increase trematode infections in a declining amphibian species. Nature. 2008;455:1235–9.
Article
CAS
PubMed
Google Scholar
Schotthoefer AM, Rohr JR, Cole RA, Koehler AV, Johnson CM, Johnson LB, et al. Effects of wetland vs. landscape variables on parasite communities of Rana pipiens: Links to anthropogenic factors. Ecol Appl. 2011;21:1257–71.
Article
PubMed
Google Scholar
Koprivnikar J, Redfern JC. Agricultural effects on amphibian parasitism: Importance of general habitat perturbations and parasite life cycles. J Wildl Dis. 2012;48:925–36.
Article
PubMed
Google Scholar
McKenzie VJ, Townsend AR. Parasitic and infectious disease responses to changing global nutrient cycles. Ecohealth. 2007;4:384–96.
Article
Google Scholar
Johnson PTJ, Carpenter SR. Influence of eutrophication on disease in aquatic ecosystems: Patterns, processes, and predictions. In: Ostfeld RS, Keesing F, Eviner VT, editors. Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton: Princeton University Press; 2008. p. 71–99.
Google Scholar
Johnson PTJ, Townsend AR, Cleveland CC, Glibert PM, Howarth RW, Mckenzie VJ, et al. Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol Appl. 2010;20:16–29.
Article
PubMed
PubMed Central
Google Scholar
Hernandez AD, Bunnell JF, Sukhdeo MVK. Composition and diversity patterns in metazoan parasite communities and anthropogenic disturbance in stream ecosystems. Parasitology. 2007;134:91–102.
Article
CAS
PubMed
Google Scholar
Feld CK, Birk S, Bradley DC, Hering D, Kail J, Marzin A, et al. From natural to degraded rivers and back again. A test of restoration ecology theory and practice. Adv Ecol Res. 2011;44:119–209.
Article
Google Scholar
Morley NJ, Lewis JW, Canal UK. Anthropogenic pressure on a molluscan-trematode community over a long-term period in the Basingstoke Canal, UK, and its implications for ecosystem health. Ecohealth. 2006;3:269–80.
Article
Google Scholar
Vidal-Martínez VM. Helminths and protozoans of aquatic organisms as bioindicators of chemical pollution. Parassitologia. 2007;49:177–84.
PubMed
Google Scholar
Marcogliese DJ. Interdisciplinarity in marine parasitology. In: Afonso-Dias I, Menezes G, MacKenzie K, Eiras J, editors. Proceedings of the international workshop on marine parasitology: Applied aspects of marine parasitology. Ponta Delgada: University of the Azores; 2008. p. 7–14.
Google Scholar
Vidal-Martínez VM, Aguirre-Macedo ML, Del Rio-Rodríguez R, Gold-Bouchot G, Rendón-Von Osten J, Miranda-Rosas GA. The pink shrimp Farfantepenaeus duorarum, its symbionts and helminths as bioindicators of chemical pollution in Campeche Sound, Mexico. J Helminthol. 2006;80:159–74.
Article
PubMed
CAS
Google Scholar
Pech D, Vidal-Martínez VM, Aguirre-Macedo ML, Gold-Bouchot G, Herrera-Silveira J, Zapata-Pérez O, et al. The checkered puffer (Spheroides testudineus) and its helminths as bioindicators of chemical pollution in Yucatan coastal lagoons. Sci Total Environ. 2009;407:2315–24.
Article
CAS
PubMed
Google Scholar
Giraudo M, Bruneau A, Gendron AD, Brodeur P, Pilote M, Marcogliese DJ, et al. Integrated spatial health assessment of yellow perch (Perca flavescens) populations from the St. Lawrence River, Quebec, Canada) part A: physiological parameters and pathogen assessment. Environ Sci Pollut Res. 2016;23:18073–84.
Article
CAS
Google Scholar
Bruneau A, Landry C, Giraudo M, Douville M, Brodeur P, Boily M, et al. Integrated spatial health assessment of yellow perch (Perca flavescens) populations from the St. Lawrence River (QC, Canada), part B: cellular and transcriptomic effects. Environ Sci Pollut Res. 2016;23:18211–21.
Article
Google Scholar
Marcogliese DJ, Blaise C, Cyr D, de Lafontaine Y, Fournier M, Gagné F, et al. Effects of a major municipal effluent on the St. Lawrence River: A case study. Ambio. 2015;44:257–74.
Article
PubMed
Google Scholar
Filipović Marijić V, Vardić Smrzlić I, Raspor B. Does fish reproduction and metabolic activity influence metal levels in fish intestinal parasites, acanthocephalans, during fish spawning and post-spawning period? Chemosphere. 2014;112:449–55.
Article
PubMed
CAS
Google Scholar
Filipović Marijić V, Vardić Smrzlić I, Raspor B. Effect of acanthocephalan infection on metal, total protein and metallothionein concentrations in European chub from a Sava River section with low metal contamination. Sci Total Environ. 2013;463–464:772–80.
Article
PubMed
CAS
Google Scholar
Jankovská I, Miholová D, Petrtýl M, Romočuský Š, Kalous L, Vadlejch J, et al. Intestinal parasite Acanthocephalus lucii (Acanthocephala) from European perch (Perca fluviatilis) as a bioindicator for lead pollution in the stream “Jevanský potok” near Prague, Czech Republic. Bull Environ Contam Toxicol. 2011;86:342–6.
Article
PubMed
CAS
Google Scholar
Brázová T, Torres J, Eira C, Hanzelová V, Miklisová D, Šalamún P. Perch and its parasites as heavy metal biomonitors in a freshwater environment: the case study of the Ružín water reservoir. Slovakia Sensors. 2012;12:3068–81.
Article
PubMed
CAS
Google Scholar
Jankovská I, Kolihová D, Miholová D, Lukešová D, Romočuský S, Válek P, et al. Effect of Acanthocephalus lucii infection on total mercury concentrations in muscle and gonads of fish host (Perca fluviatilis). Bull Environ Contam Toxicol. 2012;88:967–70.
Article
PubMed
CAS
Google Scholar
Brázová T, Hanzelová V, Miklisová D, Šalamún P, Vidal-Martínez VM. Host-parasite relationships as determinants of heavy metal concentrations in perch (Perca fluviatilis) and its intestinal parasite infection. Ecotoxicol Environ Saf. 2015;122:551–6.
Article
PubMed
CAS
Google Scholar
Jankovská I, Miholová D, Lukešová D, Kalous L, Válek P, Romočuský Š, et al. Concentrations of Zn, Mn, Cu and Cd in different tissues of perch (Perca fluviatilis) and in perch intestinal parasite (Acanthocephalus lucii) from the stream near Prague (Czech Republic). Environ Res. 2012;112:83–5.
Article
PubMed
CAS
Google Scholar
Paller VGV, Resurreccion DJB, de la Cruz CPP, Bandal MZ. Acanthocephalan parasites (Acanthogyrus sp.) of Nile tilapia (Oreochromis niloticus) as biosink of lead (Pb) contamination in a Philippine freshwater lake. Bull Environ Contam Toxicol. 2016;96:810–5.
Teimoori S, Sabour Yaraghi A, Makki MS, Shahbazi F, Nazmara S, Rokni MB, et al. Heavy metal bioabsorption capacity of intestinal helminths in urban rats. Iran J Public Health. 2014;43:310–5.
PubMed
PubMed Central
Google Scholar
Nachev M, Zimmermann S, Rigaud T, Sures B. Is metal accumulation in Pomphorhynchus laevis dependent on parasite sex or infrapopulation size? Parasitology. 2010;137:1239–48.
Article
CAS
PubMed
Google Scholar
Baruš V, Šimková A, Prokeš M, Peňáz M, Vetešník L. Heavy metals in two host-parasite systems: tapeworm vs. fish. Acta Vet Brno. 2012;81:313–7.
Article
Google Scholar
Retief N-R, Avenant-Oldewage A, du Preez H. The use of cestode parasites from the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913) in the Vaal Dam, South Africa as indicators of heavy metal bioaccumulation. Phys Chem Earth. 2006;31:840–7.
Article
Google Scholar
Jirsa F, Leodolter-Dvorak M, Krachler R, Frank C. Heavy metals in the nase, Chondrostoma nasus (L. 1758), and its intestinal parasite Caryophyllaeus laticeps (Pallas 1781) from Austrian rivers: Bioindicative aspects. Arch Environ Contam Toxicol. 2008;55:619–26.
Article
CAS
PubMed
Google Scholar
Torres J, Eira C, Miquel J, Ferrer-Maza D, Delgado E, Casadevall M. Effect of intestinal tapeworm Clestobothrium crassiceps on concentrations of toxic elements and selenium in European hake Merluccius merluccius from the Gulf of Lion (northwestern Mediterranean Sea). J Agric Food Chem. 2015;63:9349–56.
Torres J, De Lapuente J, Eira C, Nadal J. Cadmium and lead concentrations in Gallegoide sarfaai (Cestoda: Anoplocephalidae) and Apodemus sylvaticus (Rodentia: Muridae) from Spain. Parasitol Res. 2004;94:468–70.
Article
CAS
PubMed
Google Scholar
Morris T, Avenant-Oldewage A, Lamberth S, Reed C. Shark parasites as bio-indicators of metals in two South African embayments. Mar Pollut Bull. 2016;104:221–8.
Article
CAS
PubMed
Google Scholar
Al-Quraishy S, Gewik MM, Abdel-Baki AAS. The intestinal cestode Hymenolepis diminuta as a lead sink for its rat host in the industrial areas of Riyadh, Saudi Arabia. Saudi J Biol Sci King Saud University. 2014;21:387–90.
Article
Google Scholar
Čadková Z, Miholová D, Száková J, Válek P, Jankovská I, Langrová I. Is the tapeworm able to affect tissue Pb-concentrations in white rat? Parasitology. 2014;141:826–36.
Article
PubMed
CAS
Google Scholar
Courtney-Hogue C. Heavy metal accumulation in Lacistorhynchus dollfusi (Trypanorhyncha: Lacistorhynchidae) infecting Citharichthys sordidus (Pleuronectiformes: Bothidae) from Santa Monica Bay, southern California. Parasitology. 2016;143:794–9.
Tekin-Özan S, Kir I. Comparative study on the accumulation of heavy metals in different organs of tench (Tinca tinca L. 1758) and plerocercoids of its endoparasite Ligula intestinalis. Parasitol Res. 2005;97:156–9.
Article
PubMed
Google Scholar
Tekin-Özan S, Kir I. Concentrations of some heavy metals in tench (Tinca tinca L., 1758), its endoparasite (Ligula intestinalis L., 1758), sediment and water in Beyşehir Lake, Turkey. Pol J Environ Stud. 2008;17:597–603.
Google Scholar
Jankovská I, Miholová D, Bejček V, Vadlejch J, Šulc M, Száková J, et al. Influence of parasitism on trace element contents in tissues of Red Fox (Vulpes vulpes) and its parasites Mesocestoides spp. (Cestoda) and Toxascaris leonina (Nematoda). Arch Environ Contam Toxicol. 2010;58:469–77.
Article
PubMed
CAS
Google Scholar
Jankovská I, Vadlejch J, Száková J, Miholová D, Kunc P, Knížková I, et al. Experimental studies on the lead accumulation in the cestode Moniezia expansa (Cestoda: Anoplocephalidae) and its final host (Ovis aries). Ecotoxicology. 2010;19:928–32.
Article
PubMed
CAS
Google Scholar
Jankovská I, Vadlejch J, Száková J, Miholová D, Kunc P, Knížková I, et al. Experimental studies on the cadmium accumulation in the cestode Moniezia expansa (Cestoda: Anoplocephalidae) and its final host (Ovis aries). Exp Parasitol. 2010;126:130–4.
Article
PubMed
CAS
Google Scholar
Eira C, Torres J, Vingada J, Miquel J. Concentration of some toxic elements in Oryctolagus cuniculus and in its intestinal cestode Mosgovoyia ctenoides, in Dunas de Mira (Portugal). Sci Total Environ. 2005;346:81–6.
Article
CAS
PubMed
Google Scholar
Jankovská I, Miholová D, Langrová I, Bejček V, Vadlejch J, Kolihová D, et al. Influence of parasitism on the use of small terrestrial rodents in environmental pollution monitoring. Environ Pollut. 2009;157:2584–6.
Article
PubMed
CAS
Google Scholar
Golestaninasab M, Malek M, Roohi A, Karbassi AR, Amoozadeh E, Rashidinejad R, et al. A survey on bioconcentration capacities of some marine parasitic and free-living organisms in the Gulf of Oman. Ecol Indic. 2014;37:99–104.
Article
CAS
Google Scholar
Eira C, Torres J, Miquel J, Vaqueiro J, Soares AMVM, Vingada J. Trace element concentrations in Proteocephalus macrocephalus (Cestoda) and Anguillicola crassus (Nematoda) in comparison to their fish host, Anguilla anguilla in Ria de Aveiro. Portugal Sci Total Environ. 2009;407:991–8.
Article
CAS
PubMed
Google Scholar
Torres J, Foronda P, Eira C, Miquel J, Feliu C. Trace element concentrations in Raillietina micracantha in comparison to its definitive host, the feral pigeon Columba livia in Santa Cruz de Tenerife (Canary Archipelago, Spain). Arch Environ Contam Toxicol. 2010;58:176–82.
Article
CAS
PubMed
Google Scholar
Yen Nhi TT, Mohd Shazili NA, Shaharom-Harrison F. Use of cestodes as indicator of heavy-metal pollution. Exp Parasitol. 2013;133:75–9.
Article
PubMed
CAS
Google Scholar
Torres J, Peig J, Eira C, Borrás M. Cadmium and lead concentrations in Skrjabinotaenia lobata (Cestoda: Catenotaeniidae) and in its host, Apodemus sylvaticus (Rodentia: Muridae) in the urban dumping site of Garraf (Spain). Environ Pollut. 2006;143:4–8.
Article
CAS
PubMed
Google Scholar
Mendes P, Eira C, Vingada J, Miquel J, Torres J. The system Tetrabothrius bassani (Tetrabothriidae)/Morus bassanus (Sulidae) as a bioindicator of marine heavy metal pollution. Acta Parasitol. 2013;58:21–5.
Article
CAS
PubMed
Google Scholar
Genc E, Sangun MK, Dural M, Can MF, Altunhan C. Element concentrations in the swimbladder parasite Anguillicola crassus (Nematoda) and its host the European eel, Anguilla anguilla from Asi River (Hatay-Turkey). Environ Monit Assess. 2008;141:59–65.
Morsy K, Bashtar A-R, Abdel-Ghaffar F, Mehlhorn H, Quraishy SA, El-Mahdi M, et al. First record of anisakid juveniles (Nematoda) in the European seabass Dicentrarchus labrax (family: Moronidae), and their role as bio-indicators of heavy metal pollution. Parasitol Res. 2012;110:1131–8.
Article
PubMed
Google Scholar
Azmat R, Fayyaz S, Kazi N, Mahmood SJ, Uddin F. Natural bioremediation of heavy metals through nematode parasite of fish. Biotechnology. 2008;7:139–43.
Article
CAS
Google Scholar
Robinson SA, Forbes MR, Hebert CE. Mercury in parasitic nematodes and trematodes and their double-crested cormorant hosts: Bioaccumulation in the face of sequestration by nematodes. Sci Total Environ. 2010;408:5439–44.
Article
CAS
PubMed
Google Scholar
Leite LAR, Pedro NHO, Azevedo RKD, Kinoshita A, Gennari RF, Watanabe S, et al. Contracaecum sp. parasitizing Acestrorhynchus lacustris as a bioindicator for metal pollution in the Batalha River, Southeast Brazil. Sci Total Environ. 2017;575:836–40.
Khaleghzadeh-Ahangar H, Malek M, McKenzie K. The parasitic nematodes Hysterothylacium sp. type MB larvae as bioindicators of lead and cadmium: A comparative study of parasite and host tissues. Parasitology. 2011;138:1400–5.
Article
CAS
PubMed
Google Scholar
Dural M, Genc E, Yemenicioǧlu S, Kemal Sangun M. Accumulation of some heavy metals seasonally in Hysterothylacium aduncum (Nematoda) and its host red sea Bream, Pagellus erythrinus (Sparidae) from Gulf of Iskenderun (north-eastern Mediterranean). Bull Environ Contam Toxicol. 2010;84:125–31.
Dural M, Genc E, Sangun MK, Güner Ö. Accumulation of some heavy metals in Hysterothylacium aduncum (Nematoda) and its host sea bream, Sparus aurata (Sparidae) from north-eastern Mediterranean Sea (Iskenderun Bay). Environ Monit Assess. 2011;174:147–55.
Abdel-Ghaffar F, Abdel-Gaber R, Bashtar A-R, Morsy K, Mehlhorn H, Al Quraishy S, et al. Hysterothylacium aduncum (Nematoda, Anisakidae) with a new host record from the common sole Solea solea (Soleidae) and its role as a biological indicator of pollution. Parasitol Res. 2014;114:513–22.
Article
PubMed
Google Scholar
Mazhar R, Shazili NA, Harrison FS. Comparative study of the metal accumulation in Hysterothylacium reliquens (nematode) and Paraphilometroides nemipteri (nematode) as compared with their doubly infected host, Nemipterus peronii (notched threadfin bream). Parasitol Res. 2014;113:3737–43.
Baruš V, Jarkovský J, Prokeš M. Philometra ovata (Nematoda: Philometroidea): a potential sentinel species of heavy metal accumulation. Parasitol Res. 2007;100:929–33.
Article
PubMed
Google Scholar
Akinsanya B, Kuton MP. Bioaccumulation of heavy metals and parasitic fauna in Synodontis clarias (Linnaeus, 1758) and Chrysichthys nigrodigitatus (Lacepede, 1803) from Lekki Lagoon, Lagos, Nigeria. Asian Pacific J Trop Dis. 2016;6:615–21.
Article
Google Scholar
Torres J, Kacem H, Eira C, Neifar L, Miquel J. Total mercury and selenium concentrations in Sarpa salpa and Balistes capriscus and in their respective digenean endoparasites Robphildollfusium fractum and Neoapocreadium chabaudi from Tunisia. Acta Parasitol. 2014;59:580–5.
Article
CAS
PubMed
Google Scholar
Jankovská I, Sloup V, Száková J, Langrová I, Sloup S. How the tapeworm Hymenolepis diminuta affects zinc and cadmium accumulation in a host fed a hyperaccumulating plant (Arabidopsis halleri). Environ Sci Pollut Res. 2016;23:19126–33.
Article
CAS
Google Scholar
Provencher JF, Braune BM, Gilchrist HG, Forbes MR, Mallory ML. Trace element concentrations and gastrointestinal parasites of Arctic terns breeding in the Canadian High Arctic. Sci Total Env. 2014;476–477:308–16.
Article
CAS
Google Scholar
Hursky O, Pietrock M. Intestinal nematodes affect selenium bioaccumulation, oxidative stress biomarkers, and health parameters in juvenile rainbow trout (Oncorhynchus mykiss). Env Sci Technol. 2015;49:2469–76.
Article
CAS
Google Scholar
Bergey L, Weis JS, Weis P. Mercury uptake by the estuarine species Palaemonetes pugio and Fundulus heteroclitus compared with their parasites, Probopyrus pandalicola and Eustrongylides sp. Mar Poll Bull. 2002;44:1046–50.
Article
CAS
Google Scholar
Evans DW, Irwin SWB, Fitzpatrick S. The effect of digenean (Platyhelminthes) infections on heavy metal concentrations in Littorina littorea. J Mar Biol Assoc UK. 2001;81:349–50.
Article
Google Scholar
Sures B, Ruchter N, Zimmermann S, Zereini F, Wiseman CLS. Biological effects of PGE on aquatic organisms. In: Zerein F, Wiseman CLS, editors. Platinum metals in the environment. Heidelberg: Springer Berlin Heidelberg; 2015. p. 383–99.
Google Scholar