Overath P, Haag J, Lischke A, O’HUigin C. The surface structure of trypanosomes in relation to their molecular phylogeny. Int J Parasitol. 2001;31(5–6):468–71.
Article
CAS
PubMed
Google Scholar
Bouteille B, Oukem O, Bisser S, Dumas M. Treatment perspectives for human African trypanosomiasis. Fundam Clin Pharmacol. 2003;17(2):171–81.
Article
CAS
PubMed
Google Scholar
Hemmige V, Tanowitz H, Sethi A. Trypanosoma cruzi infection: a review with emphasis on cutaneous manifestations. Int J Dermatol. 2012;51(5):501–8.
Article
PubMed
PubMed Central
Google Scholar
Nussbaum K, Honek J, Cadmus C, Efferth T. Trypanosomatid parasites causing neglected diseases. Curr Med Chem. 2010;17(15):1594–617.
Article
CAS
PubMed
Google Scholar
Rassi A, Rassi A, de Rezende JM. American trypanosomiasis (Chagas disease). Infect Dis Clin North Am. 2012;26(2):275–91.
Article
PubMed
Google Scholar
Stewardson AJ, Leder K, Torresi J, Johnson DF. Two cases of Old World cutaneous leishmaniasis in Australian travelers visiting Morocco. J Travel Med. 2010;17(4):278–80.
Article
PubMed
Google Scholar
Vickerman K. The evolutionary expansion of the trypanosomatid flagellates. Int J Parasitol. 1994;24(8):1317–31.
Article
CAS
PubMed
Google Scholar
WHO. Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis. WHO Tech Rep Ser. 2012;975(5):11–9.
Google Scholar
Baldwin T, Henri S, Curtis J, O’Keeffe M, Vremec D, Shortman K, et al. Dendritic cell populations in Leishmania major-infected skin and draining lymph nodes. Infect Immun. 2004;72(4):1991–2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baldwin TM, Elso C, Curtis J, Buckingham L, Handman E. The site of Leishmania major infection determines disease severity and immune responses. Infect Immun. 2003;71(12):6830–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morrison LJ. Parasite-driven pathogenesis in Trypanosoma brucei infections. Parasite Immunol. 2011;33(8):448–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franco JR, Simarro PP, Diarra A, Jannin JG. Epidemiology of human African trypanosomiasis. Clin Epigenetics. 2014;6:257–75.
Google Scholar
Stevens JR, Noyes H, Dover GA, Gibson WC. The ancient and divergent origins of the human pathogenic trypanosomes, Trypanosoma brucei and T. cruzi. Parasitology. 1999;118:107–16.
Fermino BR, Paiva F, Soares P, Tavares LE, Viola LB, Ferreira RC, et al. Field and experimental evidence of a new caiman trypanosome species closely phylogenetically related to fish trypanosomes and transmitted by leeches. Int J Parasitol Parasites Wildl. 2015;4(3):368–78.
Article
PubMed
PubMed Central
Google Scholar
Human African Trypanosomiasis [http://www.who.int/trypanosomiasis_african/country/en/]. Accssed 25 May 2017.
Chagas disease (American trypanosomiasis) [http://www.who.int/chagas/]. Accssed 25 May 2017.
Jackson Y, Pinto A, Pett S. Chagas disease in Australia and New Zealand: risks and needs for public health interventions. Trop Med Int Health. 2014;19(2):212–8.
Article
PubMed
Google Scholar
Marcili A, Speranca MA, da Costa AP, Madeira MD, Soares HS, Sanches C, et al. Phylogenetic relationships of Leishmania species based on trypanosomatid barcode (SSU rDNA) and gGAPDH genes: taxonomic revision of Leishmania (L.) infantum chagasi in South America. Infect Genet Evol. 2014;25:44–51.
Article
CAS
PubMed
Google Scholar
Akhoundi M, Kuhls K, Cannet A, Votýpka J, Marty P, Delaunay P, et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl Trop Dis. 2016;10(3):e0004349.
Article
PubMed
PubMed Central
Google Scholar
Rose K, Curtis J, Baldwin T, Mathis A, Kumar B, Sakthianandeswaren A, et al. Cutaneous leishmaniasis in red kangaroos: isolation and characterisation of the causative organisms. Int J Parasitol. 2004;34(6):655–64.
Article
CAS
PubMed
Google Scholar
Best MP, Ash A, Bergfeld J, Barrett J. The diagnosis and management of a case of leishmaniosis in a dog imported to Australia. Vet Parasitol. 2014;202(3–4):292–5.
Article
PubMed
Google Scholar
Dougall A, Shilton C, Choy JL, Alexander B, Walton S. New reports of Australian cutaneous leishmaniasis in Northern Australian macropods. Epidemiol Infect. 2009;137(10):1516–20.
Article
CAS
PubMed
Google Scholar
Dougall AM, Alexander B, Holt DC, Harris T, Sultan AH, Bates PA, et al. Evidence incriminating midges (Diptera: Ceratopogonidae) as potential vectors of Leishmania in Australia. Int J Parasitol. 2011;41(5):571–9.
Article
PubMed
Google Scholar
Podlipaev S. The more insect trypanosomatids under study-the more diverse Trypanosomatidae appears. Int J Parasitol. 2001;31(5–6):648–52.
Article
CAS
PubMed
Google Scholar
Yurchenko V, Votýpka J, Tesařová M, Klepetková H, Kraeva N, Jirků M, et al. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol. 2014;61(2):97–112.
CAS
PubMed
Google Scholar
Maslov DA, Votýpka J, Yurchenko V, Lukeš J. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. Trends Parasitol. 2013;29(1):43–52.
Article
PubMed
Google Scholar
Votýpka J, d’Avila-Levy CM, Grellier P, Maslov DA, Lukeš J, Yurchenko V. New approaches to systematics of Trypanosomatidae: criteria for taxonomic (re)description. Trends Parasitol. 2015;31(10):460–9.
Article
PubMed
Google Scholar
Espinosa OA, Serrano MG, Camargo EP, Teixeira MM, Shaw JJ. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2016;15:1–13. doi:10.1017/S0031182016002092.
Momen H. Some current problems in the systematics of trypanosomatids. Int J Parasitol. 2001;31(5–6):640–2.
Article
CAS
PubMed
Google Scholar
Simpson AGB, Stevens JR, Lukeš J. The evolution and diversity of kinetoplastid flagellates. Trends Parasitol. 2006;22(4):168c74.
Stevens JR, Noyes HA, Schofield CJ, Gibson W. The molecular evolution of Trypanosomatidae. Adv Parasitol. 2001;48:1–56.
Article
CAS
PubMed
Google Scholar
Wheeler RJ, Gluenz E, Gull K. The limits on trypanosomatid morphological diversity. PLoS One. 2013;8(11):18.
Article
CAS
Google Scholar
Yurchenko VY, Lukeš J, Tesařová M, Jirků M, Maslov DA. Morphological discordance of the new trypanosomatid species phylogenetically associated with the genus Crithidia. Protist. 2008;159(1):99–114.
Article
CAS
PubMed
Google Scholar
Grimaldi G, Schottelius J. Leishmaniases - their relationships to monoxenous and dixenous trypanosomatids. Med Microbiol Immunol. 2001;190(1–2):3–8.
Article
CAS
PubMed
Google Scholar
Torres-Guerrero E, Quintanilla-Cedillo M, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000Research. 2017;6(750):1-15.
David CV, Craft N. Cutaneous and mucocutaneous leishmaniasis. Dermatol Ther. 2009;22(6):491–502.
Article
PubMed
Google Scholar
Barratt JL, Harkness J, Marriott D, Ellis JT, Stark D. Importance of nonenteric protozoan infections in immunocompromised people. Clin Microbiol Rev. 2010;23(4):795–836.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bienvenu AL, Gonzalez-Rey E, Picot S. Apoptosis induced by parasitic diseases. Parasit Vectors. 2010;3:106.
Article
PubMed
PubMed Central
Google Scholar
Caradonna KL, Engel JC, Jacobi D, Lee CH, Burleigh BA. Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe. 2013;13(1):108–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yoshida N. Trypanosoma cruzi infection by oral route How the interplay between parasite and host components modulates infectivity. Parasitol Int. 2008;57(2):105–9.
Article
CAS
PubMed
Google Scholar
Cortez M, Silva MR, Neira I, Ferreira D, Sasso GRS, Luquetti AO, et al. Trypanosoma cruzi surface molecule gp90 downregulates invasion of gastric mucosal epithelium in orally infected mice. Microbes Infect. 2006;8(1):36–44.
Article
CAS
PubMed
Google Scholar
Silva-Dos-Santos D, Barreto-de-Albuquerque J, Guerra B, Moreira OC, Berbert LR, Ramos MT, et al. Unraveling Chagas disease transmission through the oral route: gateways to Trypanosoma cruzi infection and target tissues. PLoS Negl Trop Dis. 2017;11(4):e0005507.
Article
PubMed
PubMed Central
Google Scholar
Zafra G, Mantilla JC, Valadares HM, Macedo AM, Gonzalez CI. Evidence of Trypanosoma cruzi II infection in Colombian chagasic patients. Parasitol Res. 2008;103(3):731–4.
Article
PubMed
Google Scholar
Villa LM, Guhl F, Zabala D, Ramirez JD, Urrea DA, Hernandez DC, et al. The identification of two Trypanosoma cruzi I genotypes from domestic and sylvatic transmission cycles in Colombia based on a single polymerase chain reaction amplification of the spliced-leader intergenic region. Mem Inst Oswaldo Cruz. 2013;108(7):932–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthews KR. The developmental cell biology of Trypanosoma brucei. J Cell Sci. 2005;118(2):283–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stich A, Abel PM, Krishna S. Human African trypanosomiasis. BMJ. 2002;325(7357):203–6.
Article
PubMed
PubMed Central
Google Scholar
Camargo EP. Phytomonas and other trypanosomatid parasites of plants and fruit. Adv Parasitol. 1999;42:29–112.
Article
CAS
PubMed
Google Scholar
Seward EA, Votýpka J, Kment P, Lukeš J, Kelly S. Description of Phytomonas oxycareni n. sp. from the salivary glands of Oxycarenus lavaterae. Protist. 2017;168(1):71–9.
Article
PubMed
Google Scholar
Desouza W, Attias M. Cell biology of Phytomonas, trypanosomatids parasites of plants. Mem Inst Oswaldo Cruz. 1991;86(3):275–84.
Article
Google Scholar
Porcel BM, Denoeud F, Opperdoes F, Noel B, Madoui MA, Hammarton TC, et al. The streamlined genome of Phytomonas spp. relative to human pathogenic kinetoplastids reveals a parasite tailored for plants. PLoS Genet. 2014;10(2):24.
Article
CAS
Google Scholar
Jaskowska E, Butler C, Preston G, Kelly S. Phytomonas: trypanosomatids adapted to plant environments. PLoS Pathog. 2015;11(1):17.
Article
CAS
Google Scholar
Zanetti A, Ferreira RC, Serrano MG, Takata CS, Campaner M, Attias M, et al. Phytomonas (Euglenozoa: Trypanosomatidae): phylogenetic analyses support infrageneric lineages and a new species transmitted to Solanaceae fruits by a pentatomid hemipteran. Eur J Protistol. 2016;56:232–249.
Kraeva N, Butenko A, Hlavacova J, Kostygov A, Myskova J, Grybchuk D, et al. Leptomonas seymouri: adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co-infection with Leishmania donovani. PLoS Pathog. 2015;11(8):23.
Article
CAS
Google Scholar
Kozminsky E, Kraeva N, Ishemgulova A, Dobáková E, Lukeš J, Kment P, et al. Host-specificity of monoxenous trypanosomatids: statistical analysis of the distribution and transmission patterns of the parasites from neotropical Heteroptera. Protist. 2015;166(5):551–68.
Article
PubMed
Google Scholar
Gibbs AJ. Observations on Leptomonas ctenocephali (Fantham, 1912). Trans R Soc Trop Med Hyg. 1947;40(4):495-500.
Olsen OW. Animal parasites: their life cycles and ecology. 1986. New York Courier Corporation.
Google Scholar
Teixeira MM, Borghesan TC, Ferreira RC, Santos MA, Takata CS, Campaner M, et al. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. Protist. 2011;162(3):503–24.
Article
PubMed
Google Scholar
Flegontov P, Butenko A, Firsov S, Kraeva N, Elias M, Field MC, et al. Genome of Leptomonas pyrrhocoris: a high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci Rep. 2016;6:23704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romeiro A, Sole-Cava A, Sousa MA, De Souza W, Attias M. Ultrastructural and biochemical characterization of promastigote and cystic forms of Leptomonas wallacei n. sp. isolated from the intestine of its natural host Oncopeltus fasciatus (Hemiptera: Lygaeidae). J Eukaryot Microbiol. 2000;47(3):208–20.
Article
CAS
PubMed
Google Scholar
Stevens J, Gibson W. The evolution of Salivarian trypanosomes. Mem Inst Oswaldo Cruz. 1999;94(2):225–6.
Article
CAS
PubMed
Google Scholar
Haag J, O’HUigin C, Overath P. The molecular phylogeny of trypanosomes: evidence for an early divergence of the Salivaria. Mol Biochem Parasitol. 1998;91(1):37–49.
Article
CAS
PubMed
Google Scholar
Desquesnes M, Holzmuller P, Lai DH, Dargantes A, Lun ZR, Jittaplapong S. Trypanosoma evansi and Surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. Biomed Res Int. 2013;2013:1–22.
Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukeš J. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc Natl Acad Sci U S A. 2008;105(6):1999–2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lainson R, Ready PD, Shaw JJ. Leishmania in phlebotomid sandflies. VII. On the taxonomic status of Leishmania peruviana, causative agent of Peruvian ‘uta’, as indicated by its development in the sandfly, Lutzomyia longipalpis. Proc R Soc Lond B Biol Sci. 1979;206(1164):307–18.
Article
CAS
PubMed
Google Scholar
Peters W, Killick-Kendrick R. The leishmaniases in biology and medicine vol. 1. London: Academic; 1987.
Google Scholar
Eldridge BF, Edman J. Medical Entomology: a textbook on public health and veterinary problems caused by arthropods, vol. 1. California: Springer Science & Business Media; 2000.
Book
Google Scholar
Kerr SF. Palaearctic origin of Leishmania. Mem Inst Oswaldo Cruz. 2000;95(1):75–80.
Article
CAS
PubMed
Google Scholar
Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, et al. Isolation of novel trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLoS Negl Trop Dis. 2017;11(1):e0005215.
Article
PubMed
PubMed Central
Google Scholar
Kreier J. Parasitic Protozoa, vol. 10. Ohio: Academic; 1995.
Google Scholar
Rogers ME, Chance ML, Bates PA. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasit. 2002;124(Pt 5):495–507.
CAS
Google Scholar
Muskus CE, Marin Villa M. [Metacyclogenesis: a basic process in the biology of Leishmania]. Biomedica: rev del Inst Nac de Salud. 2002;22(2):167–177
Seblova V, Sadlova J, Carpenter S, Volf P. Development of Leishmania parasites in Culicoides nubeculosus (Diptera: Ceratopogonidae) and implications for screening vector competence. J Med Entomol. 2012;49(5):967–70.
Article
CAS
PubMed
Google Scholar
Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007;37(10–3):1097–106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoare CA, Wallace FG. Developmental stages of trypanosomatid flagellates: a new terminology. Nature. 1966;212(5068):1385–6.
Article
Google Scholar
Wallace FG. The trypanosomatid parasites of insects and arachnids. Exp Parasitol. 1966;18(1):124–93.
Article
CAS
PubMed
Google Scholar
Lee J, Leedale G, Bradbury P. Illustrated Guide to the Protozoa. Lawrence: Wiley-Blackwell; 2000.
Google Scholar
Roberts L, Janovy J. Foundations of parasitology. 5th ed. London: Wm. C. Brown; 1996.
Google Scholar
Molyneux D, Ashford R. The biology of Trypanosoma and Leishmania, parasites of man and domestic animals. London: Taylor and Francis; 1983.
Google Scholar
Chauhan IS, Kaur J, Krishna S, Ghosh A, Singh P, Siddiqi MI, et al. Evolutionary comparison of prenylation pathway in kinetoplastid Leishmania and its sister Leptomonas. BMC Evol Biol. 2015;15:19.
Article
CAS
Google Scholar
Singh N, Chikara S, Sundar S. SOLiD sequencing of genomes of clinical isolates of Leishmania donovani from India confirm Leptomonas co-infection and raise some key questions. PLoS One. 2013;8(2):10.
Google Scholar
Frolov AO, Malysheva MN, Yurchenko V, Kostygov AY. Back to monoxeny: Phytomonas nordicus descended from dixenous plant parasites. Eur J Protistol. 2016;52:1–10.
Article
PubMed
Google Scholar
Santos ALS, Branquinha MH, D’Avila-Levy CM. The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function. An Acad Bras Cienc. 2006;78(4):687–714.
Article
CAS
PubMed
Google Scholar
Flegontov P, Votýpka J, Skalický T, Logacheva MD, Penin AA, Tanifuji G, et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol. 2013;23(18):1787–93.
Article
CAS
PubMed
Google Scholar
Chicharro C, Alvar J. Lower trypanosomatids in HIV/AIDS patients. Ann Trop Med Parasitol. 2003;97:75–8.
Article
PubMed
Google Scholar
Ghosh S, Banerjee P, Sarkar A, Datta S, Chatterjee M. Coinfection of Leptomonas seymouri and Leishmania donovani in Indian Leishmaniasis. J Clin Microbiol. 2012;50(8):2774–8.
Article
PubMed
PubMed Central
Google Scholar
Lukeš J, Skalický T, Týč J, Votýpka J, Yurchenko V. Evolution of parasitism in kinetoplastid flagellates. Mol Biochem Parasitol. 2014;195(2):115–22.
Article
PubMed
CAS
Google Scholar
Kostygov AY, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. MBio. 2016;7(2):e01985-15.
Article
PubMed
PubMed Central
Google Scholar
McGhee RB, Cosgrove WB. Biology and physiology of the lower trypanosomatidae. Microbiol Rev. 1980;44(1):140–73.
CAS
PubMed
PubMed Central
Google Scholar
Pacheco RS, Marzochi MCA, Pires MQ, Brito CMM, Madeira MD, Barbosa-Santos EGO. Parasite genotypically related to a monoxenous trypanosomatid of dog’s flea causing opportunistic infection in an HIV positive patient. Mem Inst Oswaldo Cruz. 1998;93(4):531–7.
Article
CAS
PubMed
Google Scholar
Selvapandiyan A, Ahuja K, Puri N, Krishnan A. Implications of co-infection of Leptomonas in visceral leishmaniasis in India. Parasitology. 2015;142(14):1657–62.
Article
PubMed
Google Scholar
Srivastava P, Prajapati VK, Vanaerschot M, Van der Auwera G, Dujardin JC, Sundar S. Detection of Leptomonas sp. parasites in clinical isolates of Kala-azar patients from India. Infect Genet Evol. 2010;10(7):1145–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Votýpka J, Klepetková H, Yurchenko VY, Horák A, Lukeš J, Maslov DA. Cosmopolitan distribution of a trypanosomatid Leptomonas pyrrhocoris. Protist. 2012;163(4):616–31.
Article
PubMed
Google Scholar
Morsy TA, Schnur LF, Feinsod FM, Michael SA, Saah A, Salama MM, et al. The discovery and preliminary characterization of a novel trypanosomatid parasite from Rattus norvegicus and stray dogs from Alexandria, Egypt. Ann Trop Med Parasitol. 1988;82(5):437–44.
Article
CAS
PubMed
Google Scholar
Podlipaev SA, Sturm NR, Fiala I, Fernanades O, Westenberger SJ, Dollet M, et al. Diversity of insect trypanosomatids assessed from the spliced leader RNA and 5S rRNA genes and intergenic regions. J Eukaryot Microbiol. 2004;51(3):283–90.
Article
CAS
PubMed
Google Scholar
Borghesan TC, Ferreira RC, Takata CS, Campaner M, Borda CC, Paiva F, et al. Molecular phylogenetic redefinition of Herpetomonas (Kinetoplastea, Trypanosomatidae), a genus of insect parasites associated with flies. Protist. 2013;164(1):129–52.
Article
PubMed
Google Scholar
Nasereddin A, Schweynoch C, Schonian G, Jaffe CL. Characterization of Leishmania (Leishmania) tropica axenic amastigotes. Acta Trop. 2010;113(1):72–9.
Article
CAS
PubMed
Google Scholar
Yurchenko V, Lukeš J, Xu X, Maslov DA. An integrated morphological and molecular approach to a new species description in the trypanosomatidae: The case of Leptomonas podlipaevi n. sp., a parasite of Boisea rubrolineata (Hemiptera: Rhopalidae). J Eukaryot Microbiol. 2006;53(2):103–11.
Article
CAS
PubMed
Google Scholar
Walters LL. Leishmania differentiation in natural and unnatural sand fly hosts. J Eukaryot Microbiol. 1993;40(2):196–206.
Article
CAS
PubMed
Google Scholar
Merzlyak E, Yurchenko V, Kolesnikov AA, Alexandrov K, Podlipaev SA, Maslov DA. Diversity and phylogeny of insect trypanosomatids based on small subunit rRNA genes: polyphyly of Leptomonas and Blastocrithidia. J Eukaryot Microbiol. 2001;48(2):161–9.
Article
CAS
PubMed
Google Scholar
Jirků M, Yurchenko VY, Lukeš J, Maslov DA. New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. J Eukaryot Microbiol. 2012;59(6):537–47.
Article
PubMed
Google Scholar
Berchtold M, Philippe H, Breunig A, Brugerolle G, Konig H. The phylogenetic position of Dimastigella trypaniformis within the parasitic kinetoplastids. Parasitol Res. 1994;80(8):672–9.
Article
CAS
PubMed
Google Scholar
Breniere SF, Waleckx E, Barnabe C. Over six thousand Trypanosoma cruzi strains classified into discrete typing units (DTUs): Attempt at an inventory. PLoS Negl Trop Dis. 2016;10(8):e0004792.
Article
PubMed
PubMed Central
Google Scholar
Barnabe C, Mobarec HI, Jurado MR, Cortez JA, Breniere SF. Reconsideration of the seven discrete typing units within the species Trypanosoma cruzi, a new proposal of three reliable mitochondrial clades. Infect Genet Evol. 2016;39:176–86.
Article
CAS
PubMed
Google Scholar
Tibayrenc M, Ayala FJ. Evolutionary genetics of Trypanosoma and Leishmania. Microbes Infect. 1999;1(6):465–72.
Article
CAS
PubMed
Google Scholar
Kelly JM, Law JM, Chapman CJ, Vaneys G, Evans DA. Evidence of genetic recombination in Leishmania. Mol Biochem Parasitol. 1991;46(2):253–63.
Article
CAS
PubMed
Google Scholar
Banuls AL, Guerrini F, LePont F, Barrera C, Espinel I, Guderian R, et al. Evidence for hybridization by multilocus enzyme electrophoresis and random amplified polymorphic DNA between Leishmania braziliensis and Leishmania panamensis/guyanensis in Ecuador. J Eukaryot Microbiol. 1997;44(5):408–11.
Article
CAS
PubMed
Google Scholar
Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, Svobodová M, et al. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet. 2014;10(1):14.
Article
CAS
Google Scholar
Romano A, Inbar E, Debrabant A, Charmoy M, Lawyer P, Ribeiro-Gomes F, et al. Cross-species genetic exchange between visceral and cutaneous strains of Leishmania in the sand fly vector. Proc Natl Acad Sci USA. 2014;111(47):16808–13.
Seblova V, Sadlova J, Carpenter S, Volf P. Speculations on biting midges and other bloodsucking arthropods as alternative vectors of Leishmania. Parasit Vectors. 2014;7:2.
Article
Google Scholar
Stein J, Dyce AL. Field observations on the phlebotomine sand fly Australophlebotomus mackerrasi Lewis and Dyce feeding on the Gidgee skink Egernia stokesii Gray. Parasitol Res. 2002;88(3):278–9.
Article
CAS
PubMed
Google Scholar
Seblova V, Sadlova J, Vojtkova B, Votýpka J, Carpenter S, Bates PA, et al. The biting midge Culicoides sonorensis (Diptera: Ceratopogonidae) is capable of developing late stage infections of Leishmania enriettii. PLoS Negl Trop Dis. 2015;9(9):15.
Article
Google Scholar
Slama D, Haouas N, Remadi L, Mezhoud H, Babba H, Chaker E. First detection of Leishmania infantum (Kinetoplastida: Trypanosomatidae) in Culicoides spp. (Diptera: Ceratopogonidae). Parasit Vectors. 2014;7:51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rebelo JM, Rodrigues BL, Bandeira MD, Moraes JL, Fonteles RS, Pereira SR. Detection of Leishmania amazonensis and Leishmania braziliensis in Culicoides (Diptera, Ceratopogonidae) in an endemic area of cutaneous leishmaniasis in the Brazilian Amazonia. J Vector Ecol. 2016;41(2):303–8.
Article
PubMed
Google Scholar
Olsen GJ, Woese CR. Ribosomal RNA: a key to phylogeny. Fas J. 1993;7(1):113–23.
CAS
Google Scholar
Schönian G, Cupolillo E, Mauricio I. Molecular evolution and phylogeny of Leishmania. In: Ponte-Sucre A, Diaz E, Padrón-Nieves M, editors. Drug resistance in Leishmania parasites. Vienna: Springer; 2013. p. 15–44.
Zuckerkandl E, Pauling L. Molecular disease, evolution, and genic heterogeneity Horiz. Biochem. 1962; 189–225
Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. Evolv Gen Prot. 1965; 97–166
Wilke T, Schultheiss R, Albrecht C. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. Amer Malaco Bull. 2009;27(1–2):25–45.
Article
Google Scholar
Yi SV. Understanding neutral genomic molecular clocks. Evol Bioinforma. 2007;34(3–4):144–51.
Google Scholar
Nei M, Suzuki Y, Nozawa M. The neutral theory of molecular evolution in the genomic era. In: Chakravarti A, Green E, editors. Annual review of genomics and human genetics, vol. 11. Palo Alto: Annual Reviews; 2010. p. 265–89.
Google Scholar
Takahata N. Molecular clock: an anti-neo-Darwinian legacy. Genetics. 2007;176(1):1–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamilton PB, Stevens JR, Gaunt MW, Gidley J, Gibson WC. Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA. Int J Parasitol. 2004;34(12):1393–404.
Article
CAS
PubMed
Google Scholar
Croan DG, Morrison DA, Ellis JT. Evolution of the genus Leishmania revealed by comparison of DNA and RNA polymerase gene sequences. Mol Biochem Parasitol. 1997;89(2):149–59.
Article
CAS
PubMed
Google Scholar
Deschamps P, Lara E, Marande W, Lopez-Garcia P, Ekelund F, Moreira D. Phylogenomic analysis of kinetoplastids supports that trypanosomatids arose from within bodonids. Mol Biol Evol. 2011;28(1):53–8.
Article
CAS
PubMed
Google Scholar
Fraga J, Montalvo AM, Van der Auwera G, Maes I, Dujardin JC, Requena JM. Evolution and species discrimination according to the Leishmania heat-shock protein 20 gene. Infect Genet Evol. 2013;18:229–37.
Article
CAS
PubMed
Google Scholar
Fraga J, Montalvo AM, De Doncker S, Dujardin JC, Van der Auwera G. Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infect Genet Evol. 2010;10(2):238–45.
Article
CAS
PubMed
Google Scholar
Kerr SF. Molecular trees of trypanosomes incongruent with fossil records of hosts. Mem Inst Oswaldo Cruz. 2006;101(1):25–30.
Article
PubMed
Google Scholar
Kerr SF, Merkelz R, Mackinnon C. Further support for a Palaearctic origin of Leishmania. Mem Inst Oswaldo Cruz. 2000;95(4):579–81.
Article
CAS
PubMed
Google Scholar
Noyes H. Implications of a Neotropical origin of the genus Leishmania. Mem Inst Oswaldo Cruz. 1998;93(5):657–61.
Article
CAS
PubMed
Google Scholar
Noyes HA, Morrison DA, Chance ML, Ellis JT. Evidence for a Neotropical origin of Leishmania. Mem Inst Oswaldo Cruz. 2000;95(4):575–8.
Article
CAS
PubMed
Google Scholar
Yurchenko VY, Lukeš J, Jirků M, Zeledon R, Maslov DA. Leptomonas costaricensis sp. n. (Kinetoplastea: Trypanosomatidae), a member of the novel phylogenetic group of insect trypanosomatids closely related to the genus Leishmania. Parasitology. 2006;133:537–46.
Article
CAS
PubMed
Google Scholar
Harkins KM, Schwartz RS, Cartwright RA, Stone AC. Phylogenomic reconstruction supports supercontinent origins for Leishmania. Infect Genet Evol. 2016;38:101–9.
Article
PubMed
Google Scholar
Votýpka J, Kostygov AY, Kraeva N, Grybchuk-Ieremenko A, Tesařová M, Grybchuk D, et al. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. Protist. 2014;165(6):825–38.
Article
PubMed
Google Scholar
Schaub GA. The effect of Blastocrithidia triatomae (trypanosomatidae) on the reduviid bug Triatoma infestans: influence of group-size. J Invertebr Pathol. 1990;56(2):249–57.
Article
CAS
PubMed
Google Scholar
Votýpka J, Suková E, Kraeva N, Ishemgulova A, Duží I, Lukeš J, et al. Diversity of trypanosomatids (Kinetoplastea: Trypanosomatidae) parasitizing fleas (Insecta: Siphonaptera) and description of a new genus Blechomonas gen. n. Protist. 2013;164(6):763–81.
Article
PubMed
CAS
Google Scholar
Runckel C, DeRisi J, Flenniken ML. A draft genome of the honey bee trypanosomatid parasite Crithidia mellificae. PLoS One. 2014;9(4):10.
Article
Google Scholar
Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, de Graaf DC, Evans JD. Characterization of two species of trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. J Eukaryot Microbiol. 2015;62(5):567–83.
Article
PubMed
Google Scholar
Svobodová M, Zidková L, Cepicka I, Oborník M, Lukeš J, Votýpka J. Sergeia podlipaevi gen. nov., sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera). Int J Syst Evol Microbiol. 2007;57:423–32.
Article
PubMed
CAS
Google Scholar
Kostygov AY, Grybchuk-Ieremenko A, Malysheva MN, Frolov AO, Yurchenko V. Molecular revision of the genus Wallaceina. Protist. 2014;165(5):594–604.
Article
CAS
PubMed
Google Scholar
de Oliveira SSC, Goncalves DD, Garcia-Gomes AD, Goncalves IC, Seabra SH, Menna-Barreto RF, et al. Susceptibility of Phytomonas serpens to calpain inhibitors in vitro: interference on the proliferation, ultrastructure, cysteine peptidase expression and interaction with the invertebrate host. Mem Inst Oswaldo Cruz. 2017;112(1):31–43.
Article
PubMed
Google Scholar
Hayes PM, Lawton SP, Smit NJ, Gibson WC, Davies AJ. Morphological and molecular characterization of a marine fish trypanosome from South Africa, including its development in a leech vector. Parasit Vectors. 2014;7(1):50.
Article
PubMed
PubMed Central
Google Scholar
Sehgal RNM, Jones HI, Smith TB. Host specificity and incidence of Trypanosoma in some African rainforest birds: a molecular approach. Mol Ecol. 2001;10(9):2319–27.
Article
CAS
PubMed
Google Scholar
Githure JI, Hendricks L, Schnur L, Kiilu G, Perkins P. Characterization of Crithidia-like organisms isolated from man, animals and sand flies in leishmaniasis-endemic foci in Kenya. East Afr Med J. 1986;50:243–7.
Google Scholar
Conchon I, Campaner M, Sbravate C, Camargo EP. Trypanosomatids, other than Phytomonas spp., isolated and cultured from fruit. J Protozool. 1989;36(4):412–4.
Article
Google Scholar
Sabbatani S, Calzado AI, Ferro A, Goudiaby AML, Borghi V, Zanchetta GP, et al. Atypical leishmaniasis in an HIV-2-seropositive patient from guinea-bissau. AIDS. 1991;5(7):899–901.
Article
CAS
PubMed
Google Scholar
Mebrahtu YB, Lawyer PG, Pamba H, Koech D, Perkins PV, Roberts CR, et al. Biochemical characterization and zymodeme classification of Leishmania isolates from patients, vectors, and reservoir hosts in Kenya. Am J Trop Med Hyg. 1992;47(6):852–92.
Article
CAS
PubMed
Google Scholar
Jimenez MI, LopezVelez R, Molina R, Canavate C, Alvar J. HIV co-infection with a currently non-pathogenic flagellate. Lancet. 1996;347(8996):264–5.
Article
CAS
PubMed
Google Scholar
Dedet JP, Roche B, Pratlong F, CalesQuist D, Jouannelle J, Benichou JC, et al. Diffuse cutaneous infection caused by a presumed monoxenous trypanosomatid in a patient infected with HIV. Trans R Soc Trop Med Hyg. 1995;89(6):644–6.
Article
CAS
PubMed
Google Scholar
Boisseau-Garsaud AM, Cales-Quist D, Desbois N, Jouannelle J, Jouannelle A, Pratlong F, et al. A new case of cutaneous infection by a presumed monoxenous trypanosomatid in the island of Martinique (French West Indies). Trans R Soc Trop Med Hyg. 2000;94(1):51–2.
Article
CAS
PubMed
Google Scholar
Pothirat T, Tantiworawit A, Chaiwarith R, Jariyapan N, Wannasan A, Siriyasatien P, et al. First isolation of Leishmania from Northern Thailand: case report, identification as Leishmania martiniquensis and phylogenetic position within the Leishmania enriettii complex. PLoS Negl Trop Dis. 2014;8(12):8.
Article
Google Scholar
Hailu A, Musa AM, Royce C, Wasunna M. Visceral leishmaniasis: New health tools are needed. PLoS Med. 2005;2(7):590–4.
Article
Google Scholar
Under My Skin: After infection, sleeping sickness parasite subpopulation grows in host skin [http://researchnews.plos.org/2016/08/08/under-my-skin/]
Curtis-Robles R, Wozniak EJ, Auckland LD, Hamer GL, Hamer SA. Combining public health education and disease ecology research: using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl Trop Dis. 2015;9(12):12.
Article
Google Scholar
Gois L, Badaró R, Schooley R, Grassi MFR. Immune response to Leishmania antigens in an AIDS patient with mucocutaneous leishmaniasis as a manifestation of immune reconstitution inflammatory syndrome (IRIS): a case report. BMC Infect Dis. 2015;15(1):38.
Article
PubMed
PubMed Central
Google Scholar
Mohammadpour I, Motazedian MH, Handjani F, Hatam GR. Lip leishmaniasis: a case series with molecular identification and literature review. BMC Infect Dis. 2017;17(1):96.
Article
PubMed
PubMed Central
Google Scholar
Al-Dwibe H, Gashout A, Morogum AM, El-Zubi S, Amro A. Contact dermatitis-like cutaneous leishmaniasis in a Libyan HIV patient. Parasit Vectors. 2014;7:3.
Article
Google Scholar
Pennisi MG, Cardoso L, Baneth G, Bourdeau P, Koutinas A, Miro G et al. LeishVet update and recommendations on feline leishmaniosis. 2015;8:302.
Baneth G, Zivotofsky D, Nachum-Biala Y, Yasur-Landau D, Botero AM. Mucocutaneous Leishmania tropica infection in a dog from a human cutaneous leishmaniasis focus. Parasit Vectors. 2014;7:5.
Article
Google Scholar
Ordeix L, Dalmau A, Osso M, Llull J, Montserrat-Sangra S, Solano-Gallego L. Histological and parasitological distinctive findings in clinically-lesioned and normal-looking skin of dogs with different clinical stages of leishmaniosis. Parasit Vectors. 2017;10:8.