Karesh WB, Dobson A, Lloyd-Smith JO, Lubroth J, Dixon MA, Bennett M, et al. Ecology of zoonoses: natural and unnatural histories. Lancet. 2012;380(9857):1936–45.
Article
PubMed
Google Scholar
Webster JP, Borlase A, Rudge JW. Who acquires infection from whom and how? Disentangling multi-host and multi-mode transmission dynamics in the ‘elimination’era. Phil Trans R Soc B. 2017;372(1719):20160019.
Article
Google Scholar
Kuno G, Chang GJ. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev. 2005;18(4):608–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weaver SC, Barrett AD. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol. 2004;2(10):789–801.
Article
CAS
PubMed
Google Scholar
Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, et al. Pathways to zoonotic spillover. Nat Rev Microbiol. 2017;15:502–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plowright RK, Peel AJ, Streicker DG, Gilbert AT, McCallum H, Wood J, et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl Trop Dis. 2016;10(8):e0004796.
Article
PubMed
PubMed Central
Google Scholar
Haydon DT, Cleaveland S, Taylor LH, Laurenson MK. Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis. 2002;8(12):1468–73.
Article
PubMed
Google Scholar
Viana M, Mancy R, Biek R, Cleaveland S, Cross PC, Lloyd-Smith JO, et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol Evol. 2014;29(5):270–9.
Article
PubMed
PubMed Central
Google Scholar
Kuno G, Mackenzie JS, Junglen S, Hubálek Z, Plyusnin A, Gubler DJ. Vertebrate reservoirs of arboviruses: Myth, synonym of amplifier, or reality? Viruses. 2017;9(7):185.
Article
PubMed Central
Google Scholar
World Health Organization. Arthropod-borne and rodent-borne viral diseases: report of a WHO scientific group meeting held in Geneva from 28 February to 4 March 1983. 1985. http://apps.who.int/iris/handle/10665/39922. Accessed 31 Aug 2017.
Google Scholar
Rodhain F. The idea of natural reservoir in arbovirology. Bull Soci Pathol Exot. 1997;91(4):279–82.
Google Scholar
National Notifiable Diseases Surveillance System. Australian Government, Department of Health. 2017. http://www9.health.gov.au/cda/source/cda-index.cfm. Accessed 12 Sep 2017.
Google Scholar
Harley D, Sleigh A, Ritchie S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin Microbio Rev. 2001;14(4):909–32.
Article
CAS
Google Scholar
Claflin SB, Webb CE. Ross River virus: many vectors and unusual hosts make for an unpredictable pathogen. PLoS Pathogens. 2015;11(9):e1005070.
Article
PubMed
PubMed Central
Google Scholar
Condon RJ, Rouse IL. Acute symptoms and sequelae of Ross River virus infection in South Western Australia. A follow up study. Clin Diag Virol. 1995;3(3):273–84.
Article
CAS
Google Scholar
Schleenvoigt BT, Baier M, Hagel S, Forstner C, Koetsche R, Pletz MW. Ross river virus infection in a Thuringian traveller returning from south-east Australia. Infection. 2015;43(2):229–30.
Article
CAS
PubMed
Google Scholar
Ratnayake JTB. The valuation of social and economic costs of mosquito-transmitted Ross River virus: PhD Thesis. Brisbane: Griffith University; 2006.
Tomerini DM, Dale PE, Sipe N. Does mosquito control have an effect on mosquito-borne disease? The case of Ross River virus disease and mosquito management in Queensland, Australia. J Am Mosq Cont Assoc. 2011;27(1):39–44.
Article
Google Scholar
Russell RC. Ross River virus: Ecology and distribution. Annu Rev Entomol. 2002;47:1–31.
Article
CAS
PubMed
Google Scholar
Carver S, Bestall A, Jardine A, Ostfeld RS. Influence of hosts on the ecology of arboviral transmission: potential mechanisms influencing dengue, Murray Valley encephalitis, and Ross River virus in Australia. Vector Borne Zoonotic Dis. 2009;9(1):51–64.
Article
PubMed
Google Scholar
Jacups SP, Whelan PI, Currie BJ. Ross River virus and Barmah Forest virus infections: A review of history, ecology, and predictive models, with implications for tropical northern Australia. Vector Borne Zoonotic Dis. 2008;8(2):283–97.
Article
PubMed
Google Scholar
Ng V, Dear K, Harley D, McMichael A. Analysis and prediction of Ross River virus transmission in New South Wales, Australia. Vector Borne Zoonotic Dis. 2014;14(6):422–38.
Article
PubMed
Google Scholar
Koolhof I, Carver S. Epidemic host community contribution to mosquito-borne disease transmission: Ross River virus. Epidemiol Infect. 2017;145(4):656–66.
Article
CAS
PubMed
Google Scholar
Marshall I, Miles J. Ross River virus and epidemic polyarthritis. Curr Top Vector Res. 1984;2:31–56.
Google Scholar
Rosen L, Gubler DJ, Bennett PH. Epidemic polyarthritis (Ross River) virus - infection in the Cook Islands. Am J Trop Med Hyg. 1981;30(6):1294–302.
Article
CAS
PubMed
Google Scholar
Jacups SP, Whelan PI, Markey PG, Cleland SJ, Williamson GJ, Currie BJ. Predictive indicators for Ross River virus infection in the Darwin area of tropical northern Australia, using long-term mosquito trapping data. Trop Med Int Health. 2008;13(7):943–52.
Article
PubMed
Google Scholar
Kay BH, Hall RA, Fanning ID, Mottram P, Young PL, Pollitt CC. Experimental infection of vertebrates with Murray Valley encephalitis and Ross River viruses. In: Arboviral Research of Australia: Proceedings Fourth Symposium, May 6–9, 1986. Brisbane; 1986. p. 71–5.
Doherty RL, Standfast HA, Domrow R, Wetters EJ, Whitehead RH, Carley JG. Epidemiology of arthropod-borne virus infections at Mitchell River Mission, Cape York Peninsula, North Queensland. IV. Arbovirus infections of mosquitoes and mammals, 1967–1969. Trans R Soc Trop Med Hyg. 1971;65(4):504.
Article
CAS
PubMed
Google Scholar
Aubry M, Finke J, Teissier A, Roche C, Broult J, Paulous S, et al. Silent circulation of Ross River virus in French Polynesia. Int J Infect Dis. 2015;37:19–24.
Article
PubMed
Google Scholar
Aubry M, Finke J, Teissier A, Roche C, Broult J, Paulous S, et al. Seroprevalence of arboviruses among blood donors in French Polynesia, 2011–2013. Int J Infect Dis. 2015;41:11–2.
Article
PubMed
Google Scholar
Lau C, Aubry M, Musso D, Teissier A, Paulous S, Desprès P, et al. New evidence for endemic circulation of Ross River virus in the Pacific Islands and the potential for emergence. Int J Infect Dis. 2017;57:73–6.
Article
PubMed
Google Scholar
Studdert MJ, Azoulas JK, Vasey JR, Hall RA, Ficorilli N, Huang JA. Polymerase chain reaction tests for the identification of Ross River, Kunjin and Murray Valley encephalitis virus infections in horses. Aust Vet J. 2003;8(1):76–80.
Article
Google Scholar
Ryan PA, Martin L, Mackenzie JS, Kay BH. Investigation of gray-headed flying foxes Pteropus poliocephalus (Megachiroptera: Pteropodidae) and mosquitoes in the ecology of Ross River virus in Australia. Am J Trop Med Hyg. 1997;57(4):476–82.
Kay BH, Pollitt CC, Fanning ID, Hall RA. The experimental infection of horses with Murray Valley encephalitis and Ross River viruses. Aust Vet J. 1987;64(2):52–5.
Article
CAS
PubMed
Google Scholar
Boyd AM, Hall RA, Gemmell RT, Kay BH. Experimental infection of Australian brushtail possums, Trichosurus vulpecula (Phalangeridae : Marsupialia), with Ross River and Barmah Forest viruses by use of a natural mosquito vector system. Am J Trop Med Hyg. 2001;65(6):777–82.
Article
CAS
PubMed
Google Scholar
Kay BH, Standfast HA. Ecology of arboviruses and their vectors in Australia. Curr Top Vect Res. 1987;3:1–36.
Google Scholar
Whitehead R. Experimental infection of vertebrates with Ross River and Sindbis viruses 2 Group A arboviruses isolated in Australia. Aust J Exp Biol Med Sci. 1969;47:11.
Article
CAS
PubMed
Google Scholar
Whitehead R, Doherty R, Domrow R, Standfast H, Wetters E. Studies of the epidemiology of arthropod-borne virus infections at Mitchell River Mission, Cape York Peninsula, North Queensland: III. Virus studies of wild birds, 1964–1967. Trans R Soc Trop Med Hyg. 1968;62(3):439–45.
Article
CAS
PubMed
Google Scholar
Pascoe R, George T, Cybinski D. The isolation of a Ross River virus from a horse. Aust Vet J. 1978;54(12):600.
Article
CAS
PubMed
Google Scholar
Azuolas JK, Wishart E, Bibby S, Ainsworth C. Isolation of Ross River virus from mosquitoes and from horses with signs of musculo-skeletal disease. Aust Vet J. 2003;81(6):344–7.
Article
CAS
PubMed
Google Scholar
Hobson-Peters J. Approaches for the development of rapid serological assays for surveillance and diagnosis of infections caused by zoonotic flaviviruses of the Japanese encephalitis virus serocomplex. BioMed Res Int. 2012;2012:379738.
Google Scholar
Potter A, Johansen CA, Fenwick S, Reid SA, Lindsay M. The seroprevalence and factors associated with Ross River virus infection in western grey kangaroos Macropus fuliginosus in Western Australia. Vector Borne Zoonotic Dis. 2014;14(10):740–5.
Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, et al. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis. 2003;9(3):311.
Article
PubMed
PubMed Central
Google Scholar
Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD. Host heterogeneity dominates West Nile virus transmission. Proc R Soc Lond B Biol Sci. 2006;273(1599):2327–33.
Article
Google Scholar
Stallknecht D. Impediments to wildlife disease surveillance, research, and diagnostics. In: Childs JE, Mackenzie JS, Richt JA, editors. Wildlife and emerging zoonotic diseases: The biology, circumstances and consequences of cross-species transmission. Berlin: Springer; 2007. p. 445–61.
Hill NJ, Power ML, Deane EM. Absence of Ross River virus amongst Common brushtail possums Trichosurus vulpecula from metropolitan Sydney, Australia. Eur J Wildl Res. 2009;55(3):313–6.
Article
Google Scholar
Atlas of Living Australia. 2017. http://www.ala.org.au. Accessed 15 Dec 2017.
Gard G, Marshall ID, Woodroof GM. Annually recurrent epidemic polyarthritis and Ross River virus activity in a coastal area of New South Wales. II. Mosquitos, viruses and wildlife. Am J Trop Med Hyg. 1973;22(4):551–60.
Article
CAS
PubMed
Google Scholar
McManus TJ, Marshall ID. The epidemiology of Ross River virus in Tasmania. Arbov Res Aust. 1986:127–31.
Roche SE, Wicks R, Garner MG, East IJ, Paskin R, Moloney BJ, et al. Descriptive overview of the 2011 epidemic of arboviral disease in horses in Australia. Aust Vet J. 2013;91(1):5–13.
Article
CAS
PubMed
Google Scholar
Azuolas JK. Ross River virus disease of horses. Aust Equin Vet. 1998;16(2):56–8.
Google Scholar
McGowan TW, Pinchbeck G, Phillips CJC, Perkins N, Hodgson DR, McGowan CM. A survey of aged horses in Queensland, Australia. Part 1: Management and preventive health care. Aust Vet J. 2010;8811:420–7.
Article
Google Scholar
Hu W, Tong S, Mengersen K, Oldenburg B. Exploratory spatial analysis of social and environmental factors associated with the incidence of Ross River virus in Brisbane. Australia. Am J Trop Med Hyg. 2007;76(5):814–9.
PubMed
Google Scholar
Gard G, Shorthose J, Weir R, Walsh S, Melville L. Arboviruses recovered from sentinel livestock in northern Australia. Vet Microbio. 1988;18(2):109–18.
Article
CAS
Google Scholar
Spradbrow PB. Experimenatl infection of sheep and pigs with Ross River virus. Aust Vet J. 1973;49(8):403–4.
Article
CAS
PubMed
Google Scholar
Vale TG, Spratt DM, Cloonan MJ. Serological evidence of arbovirus infection in native and domesticated mammals on the south coast of New South Wales, Australia. Aust J Zoolo. 1991;39(1):1–8.
Google Scholar
Gard G, Weir R, Walsh S. Arboviruses recovered from sentinel cattle using several virus isolation methods. Vet Microbio. 1988;18(2):119–25.
Article
CAS
Google Scholar
Boyd AM, Kay BH. Assessment of the potential of dogs and cats as urban reservoirs of Ross River and Barmah Forest viruses. Aust Vet J. 2002;80(1):83–6.
Article
CAS
PubMed
Google Scholar
Brook CE, Dobson AP. Bats as ‘special’reservoirs for emerging zoonotic pathogens. Trends Microbio. 2015;23(3):172–80.
Article
CAS
Google Scholar
Van den Hurk AF, Smith CS, Field HE, Smith IL, Northill JA, Taylor CT, et al. Transmission of Japanese encephalitis virus from the black flying fox, Pteropus alecto, to Culex annulirostris mosquitoes, despite the absence of detectable viremia. Am J Trop Med Hyg. 2009;81(3):457–62.
PubMed
Google Scholar
Johnston E, Weinstein P, Slaney D, Flies AS, Fricker S, Williams C. Mosquito communities with trap height and urban-rural gradient in Adelaide, South Australia: implications for disease vector surveillance. J Vect Ecol. 2014;39(1):48–55.
Article
Google Scholar
Lyimo IN, Ferguson HM. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol. 2009;25(4):189–96.
Article
PubMed
Google Scholar
Jansen CC, Webb CE, Graham GC, Craig SB, Zborowski P, Ritchie SA, et al. Blood sources of mosquitoes collected from urban and peri-urban environments in eastern Australia with species-specific molecular analysis of avian blood meals. Am J Trop Med Hyg. 2009;81(5):849–57.
Article
PubMed
Google Scholar
Comstedt P, Bergstrom S, Olsen B, Garpmo U, Marjavaara L, Mejlon H, et al. Migratory passerine birds as reservoirs of Lyme borreliosis in Europe. Emerg Infect Dis. 2006;12(7):1087–95.
Article
PubMed
PubMed Central
Google Scholar
Lundström JO, Lindström KM, Olsen B, Dufva R, Krakower DS. Prevalence of Sindbis virus neutralizing antibodies among Swedish passerines indicates that thrushes are the main amplifying hosts. J Med Entomol. 2001;38(2):289–97.
Article
PubMed
Google Scholar
Chung YS, Spradbrow PB. Survey for antibodies to arboviruses in domestic-fowls in Queensland. Aust Vet J. 1973;49(12):564.
Article
CAS
PubMed
Google Scholar
Tompkins D, Johansen C, Jakob-Hoff R, Pulford D, Castro I, Mackereth G. Surveillance for arboviral zoonoses in New Zealand birds. West Pac Surveill Resp J. 2013;4(4):16–23.
Google Scholar
Takken W, Verhulst NO. Host preferences of blood-feeding mosquitoes. Annu Rev Entomol. 2013;58:433–53.
Article
CAS
PubMed
Google Scholar
Kay BH, Boyd AM, Ryan PA, Hall RA. Mosquito feeding patterns and natural infection of vertebrates with Ross River and Barmah Forest viruses in Brisbane, Australia. Am J Trop Med Hyg. 2007;76(3):417–23.
PubMed
Google Scholar
Choi YH, Comiskey C, Lindsay MDA, Cross JA, Anderson M. Modelling the transmission dynamics of Ross River virus in southwestern Australia. Ima J Math Appl Med Biol. 2002;19(1):61–74.
Denholm L, Beeton NJ, Forbes LK, Carver S. A model for the dynamics of Ross River Virus in the Australian environment. Letters Biomath. 2017;4(1):187–206.
Article
Google Scholar
Glass K. Ecological mechanisms that promote arbovirus survival: a mathematical model of Ross River virus transmission. Trans R Soc Trop Med Hyg. 2005;99(4):252–60.
Article
CAS
PubMed
Google Scholar
Tompkins DM, Slaney D. Exploring the potential for Ross River virus emergence in New Zealand. Vector Borne Zoonotic Dis. 2014;14(2):141–8.
Article
PubMed
Google Scholar
Buhnerkempe MG, Roberts MP, Dobson AP, Heesterbeek H, Hudson PJ, Lloyd-Smith JO. Eight challenges in modelling disease ecology in multi-host, multi-agent systems. Epidemics. 2015;10:26–30.
Article
PubMed
Google Scholar
Faddy H, Dunford M, Seed C, Olds A, Harley D, Dean M, et al. Seroprevalence of antibodies to Ross River and Barmah Forest viruses: Possible implications for blood transfusion safety after extreme weather events. EcoHealth. 2015;12(2):347–53.
Article
PubMed
Google Scholar
Campbell J, Aldred J, Davis G. Some aspects of the natural history of Ross River virus in south-east Gippsland, Victoria. In: Arbovirus research in Australia Proceedings Fifth Symposium, August 28-September 1, 1989. Brisbane; 1989. p. 24–8.