Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet. 2014;383:2253–64.
Article
PubMed
PubMed Central
Google Scholar
Doenhoff MJ, Hagan P, Cioli D, Southgate V, Pica-Mattoccia L, Botros S, et al. Praziquantel: its use in control of schistosomiasis in sub-Saharan Africa and current research needs. Parasitology. 2009;136:1825–35.
Article
CAS
PubMed
Google Scholar
WHO. Helminth control in school-age children: a guide for managers of control programmes. Geneva: World Health Organization; 2011.
Google Scholar
Uniting to Combat NTDs: Ending Neglected Tropical Diseases: A gateway to Universal Health Coverage, Fifth progress report on the London Declaration on NTDs; 2017.
Croce D, Porazzi E, Foglia E, Restelli U, Sinuon M, Socheat D, et al. Cost-effectiveness of a successful schistosomiasis control programme in Cambodia (1995–2006). Acta Trop. 2010;113:279–84.
Article
PubMed
Google Scholar
Khieu V, Sayasone S, Muth S, Kirinoki M, Laymanivong S, Ohmae H, et al. Elimination of schistosomiasis mekongi from endemic areas in Cambodia and the Lao Peopleʼs Democratic Republic: current status and plans. Trop Med Infect Dis. 2019;4:30.
Article
PubMed Central
Google Scholar
Phillips AE, Gazzinelli-Guimaraes PH, Aurelio HO, Ferro J, Nala R, Clements M, et al. Assessing the benefits of five years of different approaches to treatment of urogenital schistosomiasis: A SCORE project in northern Mozambique. PLoS Negl Trop Dis. 2017;11:e0006061.
Article
PubMed
PubMed Central
Google Scholar
Wiegand RE, Mwinzi PNM, Montgomery SP, Chan YL, Andiego K, Omedo M, et al. A persistent hotspot of Schistosoma mansoni infection in a five-year randomized trial of praziquantel preventative chemotherapy strategies. J Infect Dis. 2017;216:1425–33.
Article
PubMed
PubMed Central
Google Scholar
Elmorshedy H, Bergquist R, Emam Abou N, Eassa S, Elsakka E, Barakat R. Can human schistosomiasis mansoni control be sustained in high-risk transmission foci in Egypt? Parasit Vectors. 2015;8:372.
Article
PubMed
PubMed Central
Google Scholar
Toor J, Turner HC, Truscott JE, Werkman M, Phillips AE, Alsallaq R, et al. The design of schistosomiasis monitoring and evaluation programmes: the importance of collecting adult data to inform treatment strategies for Schistosoma mansoni. PLoS Negl Trop Dis. 2018;12:e0006717.
Article
PubMed
PubMed Central
Google Scholar
Toor J, Alsallaq R, Truscott JE, Turner HC, Werkman M, Gurarie D, et al. Are we on our way to achieving the 2020 goals for schistosomiasis morbidity control using current World Health Organization guidelines? Clin Infect Dis. 2018;66:S245–52.
Article
PubMed
PubMed Central
Google Scholar
Ahmad G, Zhang W, Torben W, Damian RT, Wolf RF, White GL, et al. Protective and antifecundity effects of Sm-p80-based DNA vaccine formulation against Schistosoma mansoni in a nonhuman primate model. Vaccine. 2009;27:2830–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karmakar S, Zhang W, Ahmad G, Torben W, Alam MU, Le L, et al. Use of an Sm-p80-based therapeutic vaccine to kill established adult schistosome parasites in chronically infected baboons. J Infect Dis. 2014;209:1929–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddiqui AJ, Molehin AJ, Zhang W, Ganapathy PK, Kim E, Rojo JU, et al. Sm-p80-based vaccine trial in baboons: efficacy when mimicking natural conditions of chronic disease, praziquantel therapy, immunization, and Schistosoma mansoni re-encounter. Ann N Y Acad Sci. 2018;1425:19–37.
Article
CAS
PubMed
Google Scholar
Zhang W, Ahmad G, Le L, Rojo JU, Karmakar S, Tillery KA, et al. Longevity of Sm-p80-specific antibody responses following vaccination with Sm-p80 vaccine in mice and baboons and transplacental transfer of Sm-p80-specific antibodies in a baboon. Parasitol Res. 2014;113:2239–50.
Article
PubMed
PubMed Central
Google Scholar
Zhang W, Molehin AJ, Rojo JU, Sudduth J, Ganapathy PK, Kim E, et al. Sm-p80-based schistosomiasis vaccine: double-blind preclinical trial in baboons demonstrates comprehensive prophylactic and parasite transmission-blocking efficacy. Ann N Y Acad Sci. 2018;1425:38–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad G, Zhang W, Torben W, Ahrorov A, Damian RT, Wolf RF, et al. Preclinical prophylactic efficacy testing of Sm-p80-based vaccine in a nonhuman primate model of Schistosoma mansoni infection and immunoglobulin G and E responses to Sm-p80 in human serum samples from an area where schistosomiasis is endemic. J Infect Dis. 2011;204:1437–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Ahmad G, Torben W, Noor Z, Le L, Damian RT. Sm-p80-based DNA vaccine provides baboons with levels of protection against Schistosoma mansoni infection comparable to those achieved by the irradiated cercarial vaccine. J Infect Dis. 2010;201:1105–12.
Article
CAS
PubMed
Google Scholar
Chan MS, Woolhouse MEJ, Bundy DAP. Human schistosomiasis: potential long term consequences of vaccination programmes. Vaccine. 1997;15:1545–50.
Article
CAS
PubMed
Google Scholar
Guyatt HL, Evans D. Desirable characteristics of a schistosomiasis vaccine: some implications of a cost-effectiveness analysis. Acta Trop. 1995;59:197–209.
Article
CAS
PubMed
Google Scholar
Anderson RM, Medley GF. Community control of helminth infections of man by mass and selective chemotherapy. Parasitology. 1985;90:629–60.
Article
PubMed
Google Scholar
Alsallaq RA, Gurarie D, Ndeffo Mbah M, Galvani A, King C. Quantitative assessment of the impact of partially protective anti-schistosomiasis vaccines. PLoS Negl Trop Dis. 2017;11:e0005544.
Article
PubMed
PubMed Central
Google Scholar
Stylianou A, Hadjichrysanthou C, Truscott JE, Anderson RM. Developing a mathematical model for the evaluation of the potential impact of a partially efficacious vaccine on the transmission dynamics of Schistosoma mansoni in human communities. Parasit Vectors. 2017;10:294.
Article
PubMed
PubMed Central
Google Scholar
Anderson RM, May RM. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1991.
Google Scholar
Gurarie D, King CH, Yoon N, Li E. Refined stratified-worm-burden models that incorporate specific biological features of human and snail hosts provide better estimates of Schistosoma diagnosis, transmission, and control. Parasit Vectors. 2016;9:428.
Article
PubMed
PubMed Central
Google Scholar
Lo NC, Gurarie D, Yoon N, Coulibaly JT, Bendavid E, Andrews JR, et al. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc Natl Acad Sci USA. 2018;115:E584–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sow S, Polman K, Vereecken K, Vercruysse J, Gryseels B, de Vlas SJ. The role of hygienic bathing after defecation in the transmission of Schistosoma mansoni. Trans R Soc Trop Med Hyg. 2008;102:542–7.
Article
PubMed
Google Scholar
Katz N, Chaves A, Pellegrino J. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo. 1972;14:397–400.
CAS
PubMed
Google Scholar
WHO. Bench aids for the diagnosis of intestinal parasites. Geneva: World Health Organization; 1994.
Google Scholar
WHO. Prevention and control of schistosomiasis and soil-transmitted helminthiasis: report of a WHO expert committee. Geneva: World Health Organization; 2002.
Google Scholar
Booth M, Vounatsou P, Ngoran EK, Tanner M, Utzinger J. The influence of sampling effort and the performance of the Kato–Katz technique in diagnosing Schistosoma mansoni and hookworm co-infections in rural Côte dʼIvoire. Parasitology. 2003;127:525–31.
Article
CAS
PubMed
Google Scholar
Hall A. Quantitative variability of nematode egg counts in faeces: a study among rural Kenyans. Trans R Soc Trop Med Hyg. 1981;75:682–7.
Article
CAS
PubMed
Google Scholar
Burnim M, Ivy JA, King CH. Systematic review of community-based, school-based, and combined delivery modes for reaching school-aged children in mass drug administration programs for schistosomiasis. PLoS Negl Trop Dis. 2017;11:e0006043.
Article
PubMed
PubMed Central
Google Scholar
Anderson RM, Turner HC, Farrell SH, Yang J, Truscott JE. What is required in terms of mass drug administration to interrupt the transmission of schistosome parasites in regions of endemic infection? Parasit Vectors. 2015;8:553.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zwang J, Olliaro PL. Clinical efficacy and tolerability of praziquantel for intestinal and urinary schistosomiasis-a meta-analysis of comparative and non-comparative clinical trials. PLoS Negl Trop Dis. 2014;8:e3286.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dyson L, Stolk WA, Farrell SH, Hollingsworth TD. Measuring and modelling the effects of systematic non-adherence to mass drug administration. Epidemics. 2017;18:56–66.
Article
PubMed
PubMed Central
Google Scholar
Turner HC, Truscott JE, Bettis AA, Farrell SH, Deol AK, Whitton JM, et al. Evaluating the variation in the projected benefit of community-wide mass treatment for schistosomiasis: implications for future economic evaluations. Parasit Vectors. 2017;10:213.
Article
PubMed
PubMed Central
Google Scholar
Baltussen RM, Adam T, Tan-Torres Edejer T, Hutubessy RC, Acharya A, Evans DB, et al. Making choices in health: WHO guide to cost-effectiveness analysis. Geneva: World Health Organization; 2003.
Google Scholar
Woolhouse ME, Taylor P, Matanhire D, Chandiwana SK. Acquired immunity and epidemiology of Schistosoma haematobium. Nature. 1991;351:757–9.
Article
CAS
PubMed
Google Scholar
Bergquist NR, Colley DG. Schistosomiasis vaccine:research to development. Parasitol Today. 1998;14:99–104.
Article
CAS
PubMed
Google Scholar
WHO. World Health Organization Global market study: HPV vaccines. Geneva: World Health Organization; 2019.
Google Scholar
Barry MA, Simon GG, Mistry N, Hotez PJ. Global trends in neglected tropical disease control and elimination: impact on child health. Arch Dis Child. 2013;98:635–41.
Article
PubMed
Google Scholar
Anderson RM, Turner HC, Farrell SH, Truscott JE. Studies of the transmission dynamics, mathematical model development and the control of schistosome parasites by mass drug administration in human communities. Adv Parasitol. 2016;94:199–246.
Article
CAS
PubMed
Google Scholar
De Vlas SJ, Gryseels B. Underestimation of Schistosoma mansoni prevalences. Parasitol Today. 1992;8:274–7.
Article
PubMed
Google Scholar
De Vlas SJ, Gryseels B, Van Oortmarssen GJ, Polderman AM, Habbema JD. A model for variations in single and repeated egg counts in Schistosoma mansoni infections. Parasitology. 1992;104:451–60.
Article
PubMed
Google Scholar
Chan MS, Guyatt HL, Bundy DA, Booth M, Fulford AJ, Medley GF. The development of an age structured model for schistosomiasis transmission dynamics and control and its validation for Schistosoma mansoni. Epidemiol Infect. 1995;115:325–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson RM, May RM. Population dynamics of human helminth infections: control by chemotherapy. Nature. 1982;297:557–63.
Article
CAS
PubMed
Google Scholar
Fulford AJ, Butterworth AE, Ouma JH, Sturrock RF. A statistical approach to schistosome population dynamics and estimation of the life-span of Schistosoma mansoni in man. Parasitology. 1995;110:307–16.
Article
PubMed
Google Scholar
Anderson R, Truscott J, Hollingsworth TD. The coverage and frequency of mass drug administration required to eliminate persistent transmission of soil-transmitted helminths. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130435.
Article
PubMed
PubMed Central
Google Scholar
Fitzpatrick C, Fleming FM, Madin-Warburton M, Schneider T, Meheus F, Asiedu K, et al. Benchmarks for the cost per person of mass treatment against neglected tropical diseases. https://healthy.shinyapps.io/benchmark/ (2016). Accessed 30 Nov 2018.
Turner HC, Toor J, Bettis AA, Hopkins AD, Kyaw SS, Onwujekwe O, et al. Valuing the unpaid contribution of community health volunteers to mass drug administration programs. Clin Infect Dis. 2019;68:1588–95.
Article
PubMed
Google Scholar
Fitzpatrick C, Fleming FM, Madin-Warburton M, Schneider T, Meheus F, Asiedu K, et al. Benchmarking the cost per person of mass treatment for selected neglected tropical diseases: an approach based on literature review and meta-regression with web-based software application. PLoS Negl Trop Dis. 2016;10:e0005037.
Article
PubMed
PubMed Central
Google Scholar
Leslie J, Garba A, Boubacar K, Yaye Y, Sebongou H, Barkire A, et al. Neglected tropical diseases: comparison of the costs of integrated and vertical preventive chemotherapy treatment in Niger. Int Health. 2013;5:78–84.
Article
PubMed
Google Scholar
Leslie J, Garba A, Oliva EB, Barkire A, Tinni AA, Djibo A, et al. Schistosomiasis and soil-transmitted helminth control in Niger: cost effectiveness of school based and community distributed mass drug administration [corrected]. PLoS Negl Trop Dis. 2011;5:e1326.
Article
PubMed
PubMed Central
Google Scholar
Fulford AJ, Butterworth AE, Sturrock RF, Ouma JH. On the use of age-intensity data to detect immunity to parasitic infections, with special reference to Schistosoma-Mansoni in Kenya. Parasitology. 1992;105:219–27.
Article
PubMed
Google Scholar
WHO. WHO PCT Databank. https://www.who.int/neglected_diseases/preventive_chemotherapy/sch/en/ (2018). Accessed Nov 2018.