Cancrini G, Frangipane di A, Ricci I, Tessarin C, Gabrielli S, Pietrobelli M. Aedes albopictus is a natural vector of Dirofilaria immitis in Italy. Vet Parasitol. 2003;118:195–202.
Article
CAS
PubMed
Google Scholar
Wong PS, Li MZ, Chong CS, Ng LC, Tan CH. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis. 2013;7:e2348.
Article
PubMed
PubMed Central
Google Scholar
Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D, et al. Zika virus in Gabon (Central Africa)-2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis. 2014;8:e2681.
Article
PubMed
PubMed Central
Google Scholar
Kress A, Kuch U, Oehlmann J, Muller R. Effects of diapause and cold acclimation on egg ultrastructure: new insights into the cold hardiness mechanisms of the Asian tiger mosquito Aedes (Stegomyia) albopictus. J Vector Ecol. 2016;41:142–50.
Article
PubMed
Google Scholar
Rezza G. Aedes albopictus and the reemergence of Dengue. BMC Public Health. 2012;12:72.
Article
PubMed
PubMed Central
Google Scholar
Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347.
Article
PubMed
PubMed Central
Google Scholar
Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 2013;29:460–8.
Article
PubMed
PubMed Central
Google Scholar
Ayres JS, Schneider DS. The role of anorexia in resistance and tolerance to infections in Drosophila. PLoS Biol. 2009;7:e1000150.
Article
PubMed
PubMed Central
Google Scholar
Culbert NJ, Gilles JRL, Bouyer J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE. 2019;14:e0221822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kweka E, Baraka V, Mathias L, Mwang’onde B, Baraka G, Lyaruu L, et al. Ecology of Aedes mosquitoes, the Major vectors of arboviruses in human population. In: Falcón-Lezama JA, Betancourt-Cravioto M, Tapia-Conyer R, editors., et al., Dengue fever-a resilient threat in the face of innovation. London: IntechOpen; 2019. p. 40–50.
Google Scholar
Catherine J, Westbrook MHR, Pesko KN, Greene KE, Lounibos LP. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to Chikungunya virus. Vector Borne Zoonotic Dis. 2010;10:241–7.
Article
Google Scholar
Ephantus J, Muturi MBJ, Montgomery A. Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J Vector Ecol. 2012;37:154–61.
Article
Google Scholar
Murdock CC, Evans MV, McClanahan TD, Miazgowicz KL, Tesla B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl Trop Dis. 2017;11:e0005640.
Article
PubMed
PubMed Central
Google Scholar
Costanzo KS, Westby KM, Medley KA. Genetic and environmental influences on the size-fecundity relationship in Aedes albopictus (Diptera: Culicidae): Impacts on population growth estimates? PLoS ONE. 2018;13:e0201465.
Article
PubMed
PubMed Central
Google Scholar
Lubinda J, Trevino CJ, Walsh MR, Moore AJ, Hanafi-Bojd AA, Akgun S, et al. Environmental suitability for Aedes aegypti and Aedes albopictus and the spatial distribution of major arboviral infections in Mexico. Parasite Epidemiol Control. 2019;6:e00116.
Article
PubMed
PubMed Central
Google Scholar
Guo Y, Song Z, Luo L, Wang Q, Zhou G, Yang D, et al. Molecular evidence for new sympatric cryptic species of Aedes albopictus (Diptera: Culicidae) in China: a new threat from Aedes albopictus subgroup? Parasit Vectors. 2018;11:228.
Article
PubMed
PubMed Central
Google Scholar
Latreille AC, Milesi P, Magalon H, et al. High genetic diversity but no geographical structure of Aedes albopictus populations in Réunion Island. Parasites Vectors. 2019;12:597.
Article
PubMed
PubMed Central
Google Scholar
Lee EJ, Yang S-C, Kim T-K, et al. Geographical genetic variation and sources of Korean Aedes albopictus (Diptera: Culicidae) populations. J Med Entomol. 2020;57:1057–68.
Article
CAS
PubMed
Google Scholar
Chadee DD, Martinez R. Aedes aegypti (L.) in Latin American and Caribbean region: with growing evidence for vector adaptation to climate change? Acta Trop. 2016;156:137–43.
Article
PubMed
Google Scholar
Reba M, Reitsma F, Seto KC. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000. Sci Data. 2016;3:160034.
Article
PubMed
PubMed Central
Google Scholar
Jia P, Chen X, Chen J, Lu L, Liu Q, Tan X. How does the dengue vector mosquito Aedes albopictus respond to global warming? Parasit Vectors. 2017;10:140.
Article
PubMed
PubMed Central
Google Scholar
Johnson MTJ, Munshi-South J. Evolution of life in urban environments. Science. 2017;358:6363.
Article
Google Scholar
Lai S, Johansson MA, Yin W, Wardrop NA, van Panhuis WG, Wesolowski A, et al. Seasonal and interannual risks of dengue introduction from South-East Asia into China, 2005–2015. PLoS Negl Trop Dis. 2018;12:e0006743.
Article
PubMed
PubMed Central
Google Scholar
Xiang B, Gao P, Kang Y, Ren T. Importation of Zika virus in China: a significant risk in southern China. J Infect. 2017;74:328–30.
Article
PubMed
Google Scholar
Wu F, Liu Q, Lu L, Wang J, Song X, Ren D. Distribution of Aedes albopictus (Diptera: Culicidae) in northwestern China. Vector Borne Zoonotic Dis. 2011;11:1181–6.
Article
PubMed
Google Scholar
Zheng X, Zhong D, He Y, Zhou G. Seasonality modeling of the distribution of Aedes albopictus in China based on climatic and environmental suitability. Infect Dis Poverty. 2019;8:98.
Article
PubMed
PubMed Central
Google Scholar
Wu JY, Lun ZR, James AA, Chen XG. Dengue fever in mainland China. Am J Trop Med Hyg. 2010;83:664–71.
Article
PubMed
PubMed Central
Google Scholar
Lei Luo LYJ, Yang ZC. The dengue preface to endemic in mainland China: the historical largest outbreak by Aedes albopictus in Guangzhou, 2014. Infect Dis Poverty. 2017;6:148.
Article
PubMed
PubMed Central
Google Scholar
Powell JR. Genetic variation in insect vectors: death of typology? Insects. 2018;9:139.
Article
PubMed Central
Google Scholar
Vieira ML, Santini L, Diniz AL, Munhoz CF. Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol. 2016;39:312–28.
Article
PubMed
PubMed Central
Google Scholar
Porretta D, Gargani M, Bellini R, Calvitti M, Urbanelli S. Isolation of microsatellite markers in the tiger mosquito Aedes albopictus (Skuse). Mol Ecol Notes. 2006;6:880–1.
Article
CAS
Google Scholar
Manni M, Gomulski LM, Aketarawong N, Tait G, Scolari F, Somboon P, et al. Molecular markers for analyses of intraspecific genetic diversity in the Asian Tiger mosquito, Aedes albopictus. Parasit Vectors. 2015;8:188.
Article
PubMed
PubMed Central
Google Scholar
Multini LC, Marrelli MT, Wilke AB. Microsatellite loci cross-species transferability in Aedes fluviatilis (Diptera:Culicidae): a cost-effective approach for population genetics studies. Parasit Vectors. 2015;8:635.
Article
PubMed
PubMed Central
Google Scholar
Chambers EW, Meece JK, McGowan JA, Lovin DD, Hemme RR, Chadee DD, et al. Microsatellite isolation and linkage group identification in the yellow fever mosquito Aedes aegypti. J Hered. 2007;98:202–10.
Article
CAS
PubMed
Google Scholar
Bonacum J, DeSalle R, O’Grady P, Olivera D, Wintermute J, Zilversmit M. New nuclear and mitochondrial primers for systematics and comparative genomics in Drosophilidae. Dros Inf Serv. 2001;84:201–4.
Google Scholar
Park DS, Suh SJ, Hebert PD, Oh HW, Hong KJ. DNA barcodes for two scale insect families, mealybugs (Hemiptera: Pseudococcidae) and armored scales (Hemiptera: Diaspididae). Bull Entomol Res. 2011;101:429–34.
Article
CAS
PubMed
Google Scholar
Shaikevich E, Talbalaghi A. Molecular Characterization of the Asian Tiger Mosquito Aedes albopictus (Skuse) (Diptera: Culicidae) in Northern Italy. ISRN Entomol. 2013;2013:1–6.
Article
Google Scholar
Hernández-Triana LM, Brugman VA, Nikolova NI, Ruiz-Arrondo I, Barrero E, Thorne L, et al. DNA barcoding of British mosquitoes (Diptera, Culicidae) to support species identification, discovery of cryptic genetic diversity and monitoring invasive species. Zookeys. 2019;832:57–76.
Article
Google Scholar
Sun F. Achieving suitable thermal performance in residential buildings in different climatic regions of China. Energy Build. 2013;67:11–21.
Article
Google Scholar
Kang L, Zhang H. A Comprehensive Study of Agricultural Drought Resistance and Background Drought Levels in Five Main Grain-Producing Regions of China. Sustainability. 2016;8:1–12.
Article
Google Scholar
Lu B, Wu H. Classification and identification of important medical insects of China. 1st ed. Henan: Henan Science and Technology Publishing House; 2003.
Google Scholar
Norbert Becker ADP. Mosquitoes: identification, ecology and control. 3rd ed. New York: Springer International Publishing; 2019.
Google Scholar
Nagy S, Poczai P, Cernak I, Gorji AM, Hegedus G, Taller J. PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochem Genet. 2012;50:670–2.
Article
CAS
PubMed
Google Scholar
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4:535–8.
Article
Google Scholar
Zhang H-R, Niu S-F, Wu R-X, Zhai Y, Tian L-T. Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculatus and cross-species amplification for the phylogenetically related taxa. Biochem Syst Ecol. 2016;66:326–30.
Article
CAS
Google Scholar
Excoffier LLH. An integrated software package for population genetics data analysis. Evol Bioinform Online. 2015;1:47–50.
Google Scholar
Cristescu R, Sherwin WB, Handasyde K, Cahill V, Cooper DW. Detecting bottlenecks using BOTTLENECK 1.2.02 in wild populations: the importance of the microsatellite structure. Conserv Genet. 2009;11:1043–9.
Article
Google Scholar
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res. 2011;4:359–61.
Article
Google Scholar
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611–20.
Article
CAS
PubMed
Google Scholar
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–5.
Article
CAS
PubMed
Google Scholar
Mahesh BA, Kannan E, Davis GDJ, Venkatesan P, Ragunath PK. GenPop-An online tool to analyze human population genetic data. Bioinformation. 2020;16:149–52.
Article
PubMed
PubMed Central
Google Scholar
Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:2496–7.
Article
CAS
PubMed
Google Scholar
Frohlich F, Schmidt SL. Rational design of transcranial current stimulation (TCS) through mechanistic insights into cortical network dynamics. Front Hum Neurosci. 2013;7:804.
Article
PubMed
PubMed Central
Google Scholar
Murias dos Santos A, Cabezas MP, Tavares AI, Xavier R, Branco M. tcsBU: a tool to extend TCS network layout and visualization. Bioinformatics. 2016;32:627–8.
Article
PubMed
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST. Mol Biol Evol. 2012;29:1969–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao S, Guo Y, Sheng Q, et al. Heatmap3: an improved heatmap package with more powerful and convenient features. BMC Bioinform. 2014;15:16.
Article
Google Scholar
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704.
Article
PubMed
Google Scholar
Kharzinova VR, Dotsev AV, Kramarenko AS, Layshev KA, Romanenko TM, Solov’eva AD, et al. Study of the allele pool and the degree of genetic introgression of semi-demesticated and wild populations of reindeer (Rangifer tarandus L., 1758) using microsatellites. Sel’skokhozyaistvennaya Biologiya. 2016;51:811–23.
Article
Google Scholar
Lê Sébastien JJ, Husson F. FactoMineR: an R Package for Multivariate Analysis. J Stat Softw. 2008;25:1–18.
Google Scholar
Ditta A, Zhou Z, Cai X, Shehzad M, Wang X, Okubazghi K, et al. Genome-wide mining and characterization of SSR markers for gene mapping and gene diversity in Gossypium barbadense L. and Gossypium darwinii G. Watt Accessions. Agronomy. 2018;8:1–12.
Article
Google Scholar
Chapuis MP, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007;24:621–31.
Article
CAS
PubMed
Google Scholar
Dakin EE, Avise JC. Microsatellite null alleles in parentage analysis. Heredity. 2004;93:504–9.
Article
CAS
PubMed
Google Scholar
Delatte H, Toty C, Boyer S, Bouetard A, Bastien F, Fontenille D. Evidence of habitat structuring Aedes albopictus populations in Reunion Island. PLoS Negl Trop Dis. 2013;7:e211.
Article
Google Scholar
Girard P. A robust statistical method to detect null alleles in microsatellite and SNP datasets in both panmictic and inbred populations. Stat Appl Genet Mol Biol. 2011;10:artica19.
Article
Google Scholar
Rico C, Cuesta JA, Drake P, Macpherson E, Bernatchez L, Marie AD. Null alleles are ubiquitous at microsatellite loci in the Wedge Clam (Donax trunculus). PeerJ. 2017;5:e3188.
Article
PubMed
PubMed Central
Google Scholar
Lehmann T, Besansky NJ, Hawley WA, Fahey TG, Kamau L, Collins FH. Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Mol Ecol. 1997;6:243–53.
Article
CAS
PubMed
Google Scholar
Meglecz E, Petenian F, Danchin E, D’Acier AC, Rasplus JY, Faure E. High similarity between flanking regions of different microsatellites detected within each of two species of Lepidoptera: Parnassius apollo and Euphydryas aurinia. Mol Ecol. 2004;13:1693–700.
Article
CAS
PubMed
Google Scholar
Chapuis M-P, Loiseau A, Michalakis Y, Lecoq M, Estoup A. Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Mol Ecol Notes. 2005;5:554–7.
Article
CAS
Google Scholar
Zhong D, Lo E, Hu R, Metzger ME, Cummings R, Bonizzoni M, et al. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS ONE. 2013;8:e68586.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Y, Wang J, Song Z, He Y, Zheng Z, Fan P, et al. Patterns of spatial genetic structures in Aedes albopictus (Diptera: Culicidae) populations in China. Parasit Vectors. 2019;12:552.
Article
PubMed
PubMed Central
Google Scholar
Marinho RA, Bezerra-Gusmão MA, Porto VS, Olinda RA, dos Santos CAC. Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. J Vector Ecol. 2016;41:10.
Article
Google Scholar
Mogi M, Armbruster PA, Tuno N, Aranda C, Yong HS. The climate range expansion of Aedes albopictus (Diptera: Culicidae) in Asia inferred from the distribution of Albopictus Subgroup Species of Aedes (Stegomyia). J Med Entomol. 2017;54:1615–25.
Article
CAS
PubMed
Google Scholar
Jia P, Liang L, Tan X, Chen J, Chen X. Potential effects of heat waves on the population dynamics of the dengue mosquito Aedes albopictus. PLoS Negl Trop Dis. 2019;13:e0007528.
Article
PubMed
PubMed Central
Google Scholar
Naoko Takezaki AMN. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics. 1996;144:389–99.
Article
Google Scholar
Ruiling Z, Peien L, Xuejun W, Zhong Z. Molecular analysis and genetic diversity of Aedes albopictus (Diptera, Culicidae) from China. Mitochondrial DNA A DNA Mapp Seq Anal. 2018;29:594–9.
PubMed
Google Scholar
David Roiz RR, Arnoldi D, Rizzoli A. Effects of temperature and rainfall on the activity and dynamics of host-seeking Aedes albopictus females in Northern Italy. Vector Borne Zoonotic Dis. 2010;10:811–6.
Article
PubMed
Google Scholar
Kotsakiozi P, Richardson JB, Pichler V, Favia G, Martins AJ, Urbanelli S, et al. Population genomics of the Asian tiger mosquito, Aedes albopictus: insights into the recent worldwide invasion. Ecol Evol. 2017;7:10143–57.
Article
PubMed
PubMed Central
Google Scholar
Schmidt TL, Ri G, Zhang D, Zheng X, Xi Z, Hoffmann AA. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger mosquito, Aedes albopictus. PLOS Negl Trop Dis. 2017;11:e0006009.
Article
PubMed
PubMed Central
Google Scholar
Wondji C, Simard F, Lehmann T, Fondjo E, Same-Ekobo A, Fontenille D. Impact of insecticide-treated bed nets implementation on the genetic structure of Anopheles arabiensis in an area of irrigated rice fields in the Sahelian region of Cameroon. Mol Ecol. 2005;14:3683–9.
Article
CAS
PubMed
Google Scholar
Chen H, Li K, Wang X, Yang X, Lin Y, Cai F, et al. First identification of kdr allele F1534S in VGSC gene and its association with resistance to pyrethroid insecticides in Aedes albopictus populations from Haikou City, Hainan Island, China. Infect Dis Poverty. 2016;5:31.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Xu J, Zhong D, Zhang H, Yang W, Zhou G, et al. Evidence for multiple-insecticide resistance in urban Aedes albopictus populations in southern China. Parasit Vectors. 2018;11:4.
Article
PubMed
PubMed Central
Google Scholar
Su X, Guo Y, Deng J, Xu J, Zhou G, Zhou T, et al. Fast emerging insecticide resistance in Aedes albopictus in Guangzhou, China: alarm to the dengue epidemic. PLoS Negl Trop Dis. 2019;13:e0007665.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu H, Liu L, Cheng P, Yang L, Chen J, Lu Y, et al. Bionomics and insecticide resistance of Aedes albopictus in Shandong, a high latitude and high-risk dengue transmission area in China. Parasit Vectors. 2020;13:11.
Article
CAS
PubMed
PubMed Central
Google Scholar