Berry BJL. Urbanization. In: Urban ecology. Boston: Springer; 2008.
Google Scholar
Arnfield AJ. Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol. 2003;23:1–26.
Article
Google Scholar
Mishra V, Ganguly AR, Nijssen B, Lettenmaier DP. Changes in observed climate extremes in global urban areas. Environ Res Lett. 2015;10:024005.
Article
Google Scholar
Oke TR. The energetic basis of the urban heat island. Q J R Meteorol Soc. 1982;108:1–24.
Google Scholar
Johnson MTJ, Munshi-South J. Evolution of life in urban environments. Science. 2017. https://doi.org/10.1126/science.aam8327.
Article
PubMed
PubMed Central
Google Scholar
McKinney ML. Urbanization, biodiversity, and conservation. Bioscience. 2002;52:883–90.
Article
Google Scholar
Ditchkoff SS, Saalfeld ST, Gibson CJ. Animal behavior in urban ecosystems: modifications due to human-induced stress. Urban Ecosyst. 2006;9:5–12.
Article
Google Scholar
Lowry H, Lill A, Wong BBM. Behavioural responses of wildlife to urban environments. Biol Rev. 2013;88:537–49.
Article
PubMed
Google Scholar
Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, et al. Global change and the ecology of cities. Science. 2008;319:756–60.
Article
CAS
PubMed
Google Scholar
Chaves LF, Hamer GL, Walker ED, Brown WM, Ruiz MO, Kitron UD. Climatic variability and landscape heterogeneity impact urban mosquito diversity and vector abundance and infection. Ecosphere. 2011;2(6):1–21.
Article
Google Scholar
Aronson MFJ, La SFA, Nilon CH, Katti M, Goddard MA, Lepczyk CA, et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc R Soc B Biol Sci. 2014;281:20133330.
Article
Google Scholar
Battles AC, Kolbe JJ. Miami heat: urban heat islands influence the thermal suitability of habitats for ectotherms. Glob Chang Biol. 2019;25:562–76.
Article
PubMed
Google Scholar
Faeth SH, Warren PS, Shochat E, Marussich WA. Trophic dynamics in urban communities. Bioscience. 2005;55:399–407.
Article
Google Scholar
Fischer JD, Cleeton SH, Lyons TP, Miller JR. Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. Bioscience. 2012;62:809–18.
Article
Google Scholar
Bradley CA, Altizer S. Urbanization and the ecology of wildlife diseases. Trends Ecol Evol. 2007;22:95–102.
Article
PubMed
Google Scholar
Brearley G, Rhodes J, Bradley A, Baxter G, Seabrook L, Lunney D, et al. Wildlife disease prevalence in human-modified landscapes. Biol Rev. 2013;88:427–42.
Article
PubMed
Google Scholar
Mackenstedt U, Jenkins D, Romig T. The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int J Parasitol Parasites Wildl. 2015;4:71–9.
Article
PubMed
PubMed Central
Google Scholar
Murray MH, Sánchez CA, Becker DJ, Byers KA, Worsley-Tonks KEL, Craft ME. City sicker? A meta-analysis of wildlife health and urbanization. Front Ecol Environ. 2019;17:575–83.
Article
Google Scholar
Hassell JM, Begon M, Ward MJ, Fèvre EM. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol Evol. 2017;32:55–67.
Article
PubMed
PubMed Central
Google Scholar
Friggens MM, Beier P. Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologia. 2010;164:809–20.
Article
PubMed
Google Scholar
Vora N. Impact of anthropogenic environmental alterations on vector-borne diseases. Medscape J Med. 2008;10:238.
PubMed
PubMed Central
Google Scholar
Evans KL, Gaston KJ, Sharp SP, McGowan A, Simeoni M, Hatchwell BJ. Effects of urbanisation on disease prevalence and age structure in blackbird Turdus merula populations. Oikos. 2009;118:774–82.
Article
Google Scholar
Bradley CA, Gibbs SEJ, Altizer S. Urban land use predicts west Nile virus exposure in songbirds. Ecol Appl. 2008;18:1083–92.
Article
PubMed
Google Scholar
Gibbs SEJ, Wimberly MC, Madden M, Masour J, Yabsley MJ, Stallknecht DE. Factors affecting the geographic distribution of West Nile Virus in Georgia, USA: 2002–2004. Vector-Borne Zoonotic Dis. 2006;6:73–82.
Article
PubMed
Google Scholar
Hamer SA, Lehrer E, Magle SB. Wild birds as sentinels for multiple zoonotic pathogens along an urban to rural gradient in Greater Chicago, Illinois. Zoonoses Public Health. 2012;59:355–64.
Article
CAS
PubMed
Google Scholar
LaDeau SL, Allan BF, Leisnham PT, Levy MZ. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct Ecol. 2015;29:889–901.
Article
PubMed
PubMed Central
Google Scholar
Wilke ABB, Chase C, Vasquez C, Carvajal A, Medina J, Petrie WD, et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci Rep. 2019;9:1–11.
Article
Google Scholar
Reisen WK. Landscape epidemiology of vector-borne diseases. Annu Rev Entomol. 2010;55:461–83.
Article
CAS
PubMed
Google Scholar
Bowman DD, Atkins CE. Heartworm biology, treatment, and control. Vet Clin North Am Small Anim Pract. 2009;39:1127–58.
Article
PubMed
Google Scholar
Self SW, Pulaski CN, Mcmahan CS, Brown DA, Yabsley MJ, Gettings JR. Regional and local temporal trends in the prevalence of canine heartworm infection in the contiguous United States: 2012–2018. Parasites Vectors. 2019;12:380.
Article
PubMed
PubMed Central
Google Scholar
Genchi C, Rinaldi L, Mortarino M, Genchi M, Cringoli G. Climate and Dirofilaria infection in Europe. Vet Parasitol. 2009;163:286–92.
Article
PubMed
Google Scholar
Ledesma N, Harrington L. Fine-scale temperature fluctuation and modulation of (Dirofilaria immitis) larval development in (Aedes aegypti). Vet Parasitol. 2015;209:93–100.
Article
PubMed
PubMed Central
Google Scholar
Brown HE, Harrington LC, Kaufman PE, Mckay T, Bowman DD, Nelson CT, et al. Key factors influencing canine heartworm, (Dirofilaria immitis), in the United States. Parasites Vectors. 2012;31:1–9.
Google Scholar
Wang D, Bowman DD, Brown HE, Harrington LC, Kaufman PE, McKay T, et al. Factors influencing US canine heartworm (Dirofilaria immitis) prevalence. Parasites Vectors. 2014;7:1–18.
Article
CAS
Google Scholar
Ledesma N, Harrington L. Mosquito vectors of dog heartworm in the United States: vector status and factors influencing transmission efficiency. Top Companion Anim Med. 2011;26:178–85.
Article
PubMed
Google Scholar
Weinmann CJ, Garcia R. Coyotes and canine heartworm in California. J Wildl Dis. 1980;16:217–22.
Article
CAS
PubMed
Google Scholar
Sacks BN. Increasing prevalence of canine heartworm in coyotes from California. J Wildl Dis. 1998;34:386–9.
Article
CAS
PubMed
Google Scholar
Nelson TA, Gregory DG, Laursen JR. Canine heartworms in coyotes in Illinois. J Wildl Dis. 2003;39:593–9.
Article
PubMed
Google Scholar
Aher A, Caudill D, Caudill G, Butryn RS, Wolf D, Fox M, et al. Prevalence, genetic analyses, and risk factors associated with heartworm (Dirofilaria immitis) in wild coyotes (Canis latrans) from Florida, USA. J Wildl Dis. 2016;52:785–92.
Article
PubMed
Google Scholar
Bateman PW, Fleming PA. Big city life: carnivores in urban environments. J Zool. 2012;287:1–23.
Article
Google Scholar
Gehrt SD, Riley SPD. Coyotes (Canis latrans). In: Urban carnivores: ecology, conflict, and conservation. Baltimore: The Johns Hopkins University Press; 2010. p. 79–95.
Google Scholar
Gehrt SD, Anchor C, White LA. Home range and landscape use of coyotes in a metropolitan landscape: conflict or coexistence? J Mammal. 2009;90:1045–57.
Article
Google Scholar
American Heartworm Society. Incidence maps. 2021. https://www.heartwormsociety.org/pet-owner-resources/incidence-maps.
Hinton JW, Chamberlain MJ, Van Manen FT. Long-distance movements of transient coyotes in Eastern North Carolina. Am Midl Nat. 2012;168:281–8.
Article
Google Scholar
United States Climate Data. Climate Chicago—Illinois, your weather service-world climate. 2020. https://www.usclimatedata.com/climate/chicago/illinois/united-states/usil0225.
Oswald EM, Rood RB, Zhang K, Gronlund CJ, O’neill MS, White-Newsome JL, et al. An investigation into the spatial variability of near-surface air temperatures in the Detroit, Michigan, metropolitan region. J Appl Meteorol Climatol. 2012;51:1290–304.
Article
Google Scholar
Coseo P, Larsen L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc Urban Plan. 2014;125:117–29.
Article
Google Scholar
Ackerman B. Temporal march of the Chicago heat island. J Clim Appl Meteorol. 1985;24:547–54.
Article
Google Scholar
Gala TS, Alfraihat R, Mulugeta G, Gala TS. Ecological evaluation of urban heat island in Chicago city, USA hydrological application of remote sensing view project ecological evaluation of urban heat island in Chicago city, USA. J Atmos Pollut. 2016;4:23–9.
Google Scholar
Kutz FW, Dobson RC. Effects of temperature on the development of Dirofilaria immitis (Leidy) in Anopheles quadrimaculatus and on vector mortality resulting from this development 2,3. Ann Entomol Soc Am. 1974;67:325–31.
Article
Google Scholar
Christensen BM, Hollander AL. Effect of temperature on vector–parasite relationships of Aedes trivittatus and Dirofilaria immitis. Proc Helminthol Soc Wash. 1978;45:115–9.
Google Scholar
Fortin JF, Slocombe JOD. Temperature requirements for the development of Dirofilaria immitis in Aedes triseriatus and Ae. vexans. Mosq News. 1981;41:625–33.
Google Scholar
Slocombe JOD, Surgeoner GA, Srivastava B. Determination of heartworm transmission period and its use in diagnosis and control. In: Proc Hear Symp. 1990. p. 19–26.
Sacks BN, Woodward DL, Colwell AE. A long-term study of non-native-heartworm transmission among coyotes in a Mediterranean ecosystem. Oikos. 2003;102:478–90.
Article
Google Scholar
Gehrt SD, Brown JL, Anchor C. Is the urban coyote a misantrhopic synanthrope? The case from Chicago. Cities Environ. 2011;4:3.
Article
Google Scholar
Nellis CH, Wetmore SP, Keith LB. Age-related characteristics of coyote canines. J Wildl Manag. 1978;42:680–3.
Article
Google Scholar
Scrivner JH, Johnson CA, Sego CA. Use of cementum annuli and eye-lens weight for aging coyotes. Wildl Soc Bull. 2014;38:874–7.
Article
Google Scholar
McCall JW, Genchi C, Kramer LH, Guerrero J, Venco L. Chapter 4 Heartworm disease in animals and humans. In: Advances in parasitology. London: Academic Press; 2008. p. 193–285.
Google Scholar
Henry LG, Brunson KJ, Walden HS, Wenzlow N, Beachboard SE, Barr KL, et al. Comparison of six commercial antigen kits for detection of (Dirofilaria immitis) infections in canines with necropsy-confirmed heartworm status. Vet Parasitol. 2018;254:178–82.
Article
CAS
PubMed
Google Scholar
Getz WM, Wilmers CC. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography. 2004;27:489–505.
Article
Google Scholar
Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC. LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions. PLoS ONE. 2007;2:e207.
Article
PubMed
PubMed Central
Google Scholar
Calenge C. Home range estimation in R: the adehabitatHR package. 2015.
R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria; 2020.
ESRI ESRI. ArcGIS professional GIS for the desktop, version 10.3.1, United States. 2015.
Gese EM, Morey PS, Gehrt SD. Influence of the urban matrix on space use of coyotes in the Chicago metropolitan area. J Ethol. 2012;30(3):413–25.
Article
Google Scholar
Poessel SA, Breck SW, Gese EM. Spatial ecology of coyotes in the Denver metropolitan area: influence of the urban matrix. J Mammal. 2016;97:1414–27.
Article
Google Scholar
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. arXiv Prepr arXiv. 2014;1406.5823.
Chitwood MC, Swingen MB, Lashley MA, Flowers JR, Palamar MB, Apperson CS, et al. Parasitology and serology of free-ranging coyotes (Canis latrans) in North Carolina, USA. J Wildl Dis. 2015;51:664–9.
Article
PubMed
CAS
Google Scholar
Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2002.
Google Scholar
Johnson JB, Omland KS. Model selection in ecology and evolution. Trends Ecol Evol. 2004;19:101–8.
Article
PubMed
Google Scholar
Barton K. Package ‘MuMIn’. R package version 1. 2013.
Grueber CE, Nakagawa S, Laws RJ, Jamieson IG. Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol. 2011;24:699–711.
Article
CAS
PubMed
Google Scholar
Fox J, Weisberg S. Car: an R companion to applied regression, 2nd edition. R package. 2011.
Hartig F. Package ‘DHARMa’ residual diagnostics for hierarchical (multi-level/mixed) regression models. 2017.
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2013;4:133–42.
Article
Google Scholar
Pluemer M, Dubay S, Drake D, Crimmins S, Veverka T, Hovanec H, et al. Red foxes (Vulpes vulpes) and coyotes (Canis latrans) in an urban landscape: prevalence and risk factors for disease. J Urban Ecol. 2019;5:1–9.
Article
Google Scholar
Grinder M, Krausman PR. Morbidity-mortality factors and survival of an urban coyote population in Arizona. J Wildl Dis. 2001;37:312–7.
Article
CAS
PubMed
Google Scholar
Hahn MB, Eisen L, McAllister J, Savage HM, Mutebi JP, Eisen RJ. Updated reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the United States, 1995–2016. J Med Entomol. 2017;54:1420–4.
Article
PubMed
PubMed Central
Google Scholar
Proestos Y, Christophides GK, Ergüler K, Tanarhte M, Waldock J, Lelieveld J. Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philos Trans R Soc B Biol Sci. 2015;370:1–16.
Google Scholar
Paras KL, O’Brien VA, Reiskind MH. Comparison of the vector potential of different mosquito species for the transmission of heartworm, (Dirofilaria immitis), in rural and urban areas in and surrounding Stillwater, Oklahoma, USA. Med Vet Entomol. 2014;28:60–7.
Article
PubMed
Google Scholar
Li Y, Kamara F, Zhou G, Puthiyakunnon S, Li C, Liu Y, et al. Urbanization increases (Aedes albopictus) larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis. 2014;8:e3301.
Article
PubMed
PubMed Central
Google Scholar
Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, et al. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasites Vectors. 2010;3:19.
Article
PubMed
PubMed Central
Google Scholar
Trájer A, Rengei A, Farkas-Iványi K, Bede-Fazekas Á. Impacts of urbanisation level and distance from potential natural mosquito breeding habitats on the abundance of canine Dirofilariosis. Acta Vet Hung. 2016;64:340–59.
Article
PubMed
Google Scholar
Crocker W, Maute K, Webb C, French K. Mosquito assemblages associated with urban water bodies; implications for pest and public health threats. Landsc Urban Plan. 2017;162:115–25.
Article
Google Scholar
Bartlett-Healy K, Unlu I, Obenauer P, Hughes T, Healy S, Crepeau T, et al. Larval mosquito habitat utilization and community dynamics of Aedes albopictus and Aedes japonicus (Diptera: Culicidae). J Med Entomol. 2012;49:813–24.
Article
PubMed
Google Scholar
Ferraguti M, Martínez-De La Puente J, Roiz D, Ruiz S, Soriguer R, Figuerola J. Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep. 2016;6:1–9.
Article
CAS
Google Scholar
Medeiros-Sousa AR, Fernandes A, Ceretti-Junior W, Barreto A, Wilke B, Toledo MM. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci Rep. 2017;7:17826.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rey J, Walton W, Wolfe R, Connelly C, O’Connell S, Berg J, et al. North American wetlands and mosquito control. Int J Environ Res Public Health. 2012;9:4537–605.
Article
PubMed
PubMed Central
Google Scholar
Goddard J, Varnado WC, Harrison BA. An annotated list of the mosquitoes (Diptera: Culicidae) of Mississippi. J Vector Ecol. 2010;35:79–88.
Article
PubMed
Google Scholar
Gese EM, Rongstad OJ, Mytton WR. Home range and habitat use of coyotes in southeastern Colorado. J Wildl Manag. 1988;52:640–6.
Article
Google Scholar
Frantz A, Pottier MA, Karimi B, Corbel H, Aubry E, Haussy C, et al. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ Pollut. 2012;168:23–8.
Article
CAS
PubMed
Google Scholar
Ayral F, Artois J, Zilber AL, Widén F, Pounder KC, Aubert D, et al. The relationship between socioeconomic indices and potentially zoonotic pathogens carried by wild Norway rats: a survey in Rhône, France (2010–2012). Epidemiol Infect. 2015;143:586–99.
Article
CAS
PubMed
Google Scholar
Murray MH, Fidino M, Fyffe R, Byers KA, Pettengill JB, Sondgeroth KS, et al. City sanitation and socioeconomics predict rat zoonotic infection across diverse neighbourhoods. Zoonoses Public Health. 2020;67:673–83.
Article
CAS
PubMed
Google Scholar
Moll RJ, Cepek JD, Lorch PD, Dennis PM, Tans E, et al. What does urbanization actually mean? A framework for urban metrics in wildlife research. J Appl Ecol. 2019;56:1289.
Article
Google Scholar
Seto KC, Fragkias M, GüNeralp B, Reilly MK. A meta-analysis of global urban land expansion. PLoS ONE. 2011;6:23777.
Article
CAS
Google Scholar