Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69. https://doi.org/10.1186/1756-3305-5-69.
Article
PubMed
PubMed Central
Google Scholar
Garrett-Jones C, Shidrawi GR. Malaria vectorial capacity of a population of Anopheles gambiae. Bull WHO. 1969;40:531–545. https://apps.who.int/iris/handle/10665/267721.
Coluzzi M, Sabatini A, Petrarca V, Di Deco MA. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979;73:483–97. https://doi.org/10.1016/0035-9203(79)90036-1.
Article
PubMed
CAS
Google Scholar
Zaim M, Aitio A, Nakashima N. Safety of pyrethroid-treated mosquito nets. Med Vet Entomol. 2000;14:1–5. https://doi.org/10.1046/j.1365-2915.2000.00211.x.
Article
PubMed
CAS
Google Scholar
Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11. https://doi.org/10.1038/nature15535.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–8. https://doi.org/10.1016/j.pt.2010.08.004.
Article
PubMed
CAS
Google Scholar
Strode C, Donegan S, Garner P, Enayati AA, Hemingway J. The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med. 2014;11: e1001619. https://doi.org/10.1371/journal.pmed.1001619.
Article
PubMed
PubMed Central
Google Scholar
Mitchell SN, Rigden DJ, Dowd AJ, Lu F, Wilding CS, Weetman D, et al. Metabolic and target-site mechanisms combine to confer strong DDT resistance in Anopheles gambiae. PLoS ONE. 2014;9: e92662. https://doi.org/10.1371/journal.pone.0092662.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chouaïbou M, Zivanovic GB, Knox TB, Jamet HP, Bonfoh B. Synergist bioassays: a simple method for initial metabolic resistance investigation of field Anopheles gambiae s.l. populations. Acta Trop. 2014;130:108–11. https://doi.org/10.1016/j.actatropica.2013.10.020.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stevenson BJ, Bibby J, Pignatelli P, Muangnoicharoen S, O’Neill PM, Lian L-Y, et al. Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metabolizes pyrethroids: sequential metabolism of deltamethrin revealed. Insect Biochem Mol Biol. 2011;41:492–502. https://doi.org/10.1016/j.ibmb.2011.02.003.
Article
PubMed
CAS
Google Scholar
Chouaïbou M, Kouadio FB, Tia E, Djogbenou L. First report of the East African kdr mutation in an Anopheles gambiae mosquito in Côte d’Ivoire. Wellcome Open Res. 2017; 2:8. https://doi.org/10.12688/wellcomeopenres.10662.1.
Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, et al. Molecular characterization of pyrethroid knockdown resistance (Kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–84. https://doi.org/10.1046/j.1365-2583.1998.72062.x.
Article
PubMed
CAS
Google Scholar
Dabiré RK, Namountougou M, Diabaté A, Soma DD, Bado J, Toé HK, et al. Correction: distribution and frequency of kdr mutations within Anopheles gambiae s.l. populations and first report of the Ace-1 G119S mutation in Anopheles arabiensis from Burkina Faso (West Africa). PLoS ONE. 2015;10:e0141645. https://doi.org/10.1371/journal.pone.0101484.
Article
PubMed
PubMed Central
CAS
Google Scholar
Essandoh J, Yawson AE, Weetman D. Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana. Malaria J. 2013;12:404. https://doi.org/10.1186/1475-2875-12-404.
Article
CAS
Google Scholar
Cook J, Hergott D, Phiri W, Rivas MR, Bradley J, Segura L, et al. Trends in parasite prevalence following 13 years of malaria interventions on Bioko island, Equatorial Guinea: 2004–2016. Malaria J. 2018;17:62. https://doi.org/10.1186/s12936-018-2213-9.
Article
Google Scholar
Dossou-Yovo J, Guillet P, Rogier C, Chandre F, Carnevale P, Assi S-B, et al. Protective efficacy of lambda-cyhalothrin treated nets in Anopheles gambiae pyrethroid resistance areas of Côte d’Ivoire. Am J Trop Med Hyg. 2005;73:859–64. https://doi.org/10.4269/ajtmh.2005.73.859.
Article
PubMed
Google Scholar
Kleinschmidt I, Bradley J, Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infect Dis. 2018;18:640–9. https://doi.org/10.1016/S1473-3099(18)30172-5.
Article
PubMed
PubMed Central
Google Scholar
Tokponnon FT, Sissinto Y, Ogouyémi AH, Adéothy AA, Adechoubou A, Houansou T, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: evidence from health facility data from Benin. Malaria J. 2019;11:550. https://doi.org/10.1186/s13071-018-3101-4.
Article
Google Scholar
Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet. 2018;391:1577–88. https://doi.org/10.1016/S0140-6736(18)30427-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alout H, Ndam NT, Sandeu MM, Djégbe I, Chandre F, Dabiré RK, et al. Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum field isolates. PLoS ONE. 2013;8:e63849. https://doi.org/10.1371/journal.pone.0063849.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ndiath M, Cailleau A, Diedhiou S, Gaye A, Boudin C, Richard V, et al. Effects of the kdr resistance mutation on the susceptibility of wild Anopheles gambiae populations to Plasmodium falciparum: a hindrance for vector control. Malaria J. 2014;13:340. https://doi.org/10.1186/1475-2875-13-340.
Article
CAS
Google Scholar
Mitri C, Markianos K, Guelbeogo WM, Bischoff E, Gneme A, Eiglmeier K, et al. The kdr-bearing haplotype and susceptibility to Plasmodium falciparum in Anopheles gambiae: genetic correlation and functional testing. Malaria J. 2015;14:391. https://doi.org/10.1186/s12936-015-0924-8.
Article
CAS
Google Scholar
Dabiré RK, Namountougou M, Diabaté A, Soma DD, Bado J, Toé HK, et al. Distribution and frequency of kdr mutations within Anopheles gambiae s.l. populations and first report of the Ace1G119S mutation in Anopheles arabiensis from Burkina Faso (West Africa). PLoS ONE. 2014;9:e101484. https://doi.org/10.1371/journal.pone.0101484.
Article
PubMed
PubMed Central
CAS
Google Scholar
Camara S, Koffi AA, Ahoua Alou LP, Koffi K, Kabran JPK, Koné A, et al. Mapping insecticide resistance in Anopheles gambiae (s.l.) from Côte d’Ivoire. Parasit Vectors. 2018;11:19. https://doi.org/10.1186/s13071-017-2546-1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sternberg ED, Cook J, Ahoua Alou LP, Aoura CJ, Assi SB, Doudou DT, et al. Evaluating the impact of screening plus eave tubes on malaria transmission compared to current best practice in central Côte d’Ivoire: a two armed cluster randomized controlled trial. BMC Public Health. 2018;18:894. https://doi.org/10.1186/s12889-018-5746-5.
Article
PubMed
PubMed Central
Google Scholar
Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Johannesburg. 1987;143:15.
Google Scholar
Yahouédo GA, Chandre F, Rossignol M, Ginibre C, Balabanidou V, Mendez NGA, et al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci Rep. 2017;7:11091. https://doi.org/10.1038/s41598-017-11357-z.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mangold KA, Manson RU, Koay ESC, Stephens L, Regner M, Thomson RB, et al. Real-Time PCR for detection and identification of Plasmodium spp. J Clin Microbiol. 2005;43:2435–40. https://doi.org/10.1128/JCM.43.5.2435-2440.2005.
Article
PubMed
PubMed Central
CAS
Google Scholar
Favia G, Lanfrancotti A, Spanos L, Sidén-Kiamos I, Louis C. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s.: An. gambiae s.s. rDNA polymorphisms. Insect Mol Biol. 2001;10:19–23. https://doi.org/10.1046/j.1365-2583.2001.00236.x.
Article
PubMed
CAS
Google Scholar
Bass C, Nikou D, Donnelly MJ, Williamson MS, Ranson H, Ball A, et al. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malaria J. 2007;6:111. https://doi.org/10.1186/1475-2875-6-111.
Article
CAS
Google Scholar
Bass C, Nikou D, Vontas J, Williamson MS, Field LM. Development of high-throughput real-time PCR assays for the identification of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae. Pestic Biochem Physio. 2010;96:80–5. https://doi.org/10.1016/j.pestbp.2009.09.004.
Article
CAS
Google Scholar
Koffi AA, Ahoua-Alou LP, Djenontin A, Kabran JPK, Dosso Y, Kone A, et al. Efficacy of Olyset ® Duo, a permethrin and pyriproxyfen mixture net against wild pyrethroid-resistant Anopheles gambiae s.s. from Côte d’Ivoire: an experimental hut trial. Parasite. 2015;22:28. https://doi.org/10.1051/parasite/2015028.
Article
PubMed
PubMed Central
Google Scholar
Zoh DD, Ahoua Alou LP, Toure M, Pennetier C, Camara S, Traore DF, et al. The current insecticide resistance status of Anopheles gambiae (s.l.) (Culicidae) in rural and urban areas of Bouaké, Côte d’Ivoire. Parasit Vectors. 2018;11:118. https://doi.org/10.1186/s13071-018-2702-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gnémé A, Guelbéogo WM, Riehle MM, Sanou A, Traoré A, Zongo S, et al. Equivalent susceptibility of Anopheles gambiae M and S molecular forms and Anopheles arabiensis to Plasmodium falciparum infection in Burkina Faso. Malar J. 2013;12:204. https://doi.org/10.1186/1475-2875-12-204.
Article
PubMed
PubMed Central
Google Scholar
Sternberg ED, Cook J, Alou LPA, Assi SB, Koffi AA, Doudou DT, et al. Impact and cost-effectiveness of a lethal house lure against malaria transmission in central Côte d’Ivoire: a two-arm, cluster-randomised controlled trial. Lancet. 2021;397:805–15. https://doi.org/10.1016/S0140-6736(21)00250-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koukpo CZ, Fassinou AJYH, Ossè RA, Agossa FR, Sovi A, Sewadé WT, et al. The current distribution and characterization of the L1014F resistance allele of the kdr gene in three malaria vectors (Anopheles gambiae, Anopheles coluzzii, Anopheles arabiensis) in Benin (West Africa). Malaria J. 2019;18:175. https://doi.org/10.1186/s12936-019-2808-9.
Article
CAS
Google Scholar
Zogo B, Soma DD, Tchiekoi BN, Somé A, Ahoua Alou LP, Koffi AA, et al. Anopheles bionomics, insecticide resistance mechanisms, and malaria transmission in the Korhogo area, northern Côte d’Ivoire: a pre-intervention study. Parasite. 2019;26:40. https://doi.org/10.1051/parasite/2019040.
Article
PubMed
PubMed Central
Google Scholar
Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, et al. Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors. 2014;7:480. https://doi.org/10.1186/s13071-014-0480-z.
Article
PubMed
PubMed Central
Google Scholar
Alout H, Dabiré RK, Djogbénou LS, Abate L, Corbel V, Chandre F, et al. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae. Sci Rep. 2016;6:29755. https://doi.org/10.1038/srep29755.
Article
PubMed
PubMed Central
CAS
Google Scholar
Djogbénou L, Noel V, Agnew P. Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malar J. 2010;9:12. https://doi.org/10.1186/1475-2875-9-12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Djogbénou LS, Assogba B, Essandoh J, Constant EAV, Makoutodé M, Akogbéto M, et al. Estimation of allele-specific Ace-1 duplication in insecticide-resistant Anopheles mosquitoes from West Africa. Malar J. 2015;14:507. https://doi.org/10.1186/s12936-015-1026-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Collins E, Vaselli NM, Sylla M, Beavogui AH, Orsborne J, Lawrence G, et al. The relationship between insecticide resistance, mosquito age and malaria prevalence in Anopheles gambiae s.l. from Guinea. Sci Rep. 2019;9:8846. https://doi.org/10.1038/s41598-019-45261-5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kabula B, Tungu P, Rippon EJ, Steen K, Kisinza W, Magesa S, et al. A significant association between deltamethrin resistance, Plasmodium falciparum infection and the Vgsc-1014S resistance mutation in Anopheles gambiae highlights the epidemiological importance of resistance markers. Malaria J. 2016;15:289. https://doi.org/10.1186/s12936-016-1331-5.
Article
CAS
Google Scholar
Ndiath MO, Cohuet A, Gaye A, Konate L, Mazenot C, Faye O, et al. Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis. Malar J. 2011;10:269. https://doi.org/10.1186/1475-2875-10-269.
Article
PubMed
PubMed Central
Google Scholar
Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, et al. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw. 2012;27:233–49. https://doi.org/10.1080/10556788.2011.597854.
Article
Google Scholar
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009;24:127–35. https://doi.org/10.1016/j.tree.2008.10.008.
Article
PubMed
Google Scholar
Cohuet A, Harris C, Robert V, Fontenille D. Evolutionary forces on Anopheles: what makes a malaria vector? Trends Parasitol. 2010;26:130–6. https://doi.org/10.1016/j.pt.2009.12.001.
Article
PubMed
Google Scholar
Glunt KD, Thomas MB, Read AF. The effects of age, exposure history and malaria infection on the susceptibility of Anopheles mosquitoes to low concentrations of pyrethroid. PLoS ONE. 2011;6: e24968. https://doi.org/10.1371/journal.pone.0024968.
Article
PubMed
PubMed Central
CAS
Google Scholar
Manguin S. Biodiversity of malaria in the world. English version completely updated. Paris: John Libbey Eurotext; 2008; 133:427. http://hdl.handle.net/10390/2213.
Churcher TS, Lissenden N, Griffin JT, Worrall E, Ranson H. The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. eLife. 2016;2(5):e16090. https://doi.org/10.7554/eLife.16090.
Article
CAS
Google Scholar
Mbepera S, Nkwengulila G, Peter R, Mausa EA, Mahande AM, Coetzee M, et al. The influence of age on insecticide susceptibility of Anopheles arabiensis during dry and rainy seasons in rice irrigation schemes of northern Tanzania. Malaria J. 2017;16:364. https://doi.org/10.1186/s12936-017-2022-6.
Article
Google Scholar
Simard F, Ayala D, Kamdem G, Pombi M, Etouna J, Ose K, et al. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 2009;9:17. https://doi.org/10.1186/1472-6785-9-17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gimonneau G, Bouyer J, Morand S, Besansky NJ, Diabate A, Simard F. A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae. Behav Ecol. 2010;21:1087–92. https://doi.org/10.1093/beheco/arq114.
Article
PubMed
PubMed Central
Google Scholar