Dantas-Torres F. Canine leishmaniosis in South America. Parasit Vectors. 2009;2(Suppl 1):S1.
Article
Google Scholar
Departamento de vigilância epidemiológica, Secretaria de Vigilância em Saúde, Ministério da Saúde (BR). Guia de Vigilância em Saúde. 3rd ed. Brasilia: Ministério da Saúde (BR). 2019.
Werneck GL. Visceral leishmaniasis in Brazil: rationale and concerns related to reservoir control. Rev Saude Publica. 2014;48:851–5.
Article
Google Scholar
Ministério da Agricultura, Pecuária e Abastecimento e Ministério da Saúde. Nota técnica conjunta no. 001/2016. https://www.sbmt.org.br/portal/wp-content/uploads/2016/09/nota-tecnica.pdf. Accessed 18 Sep 2021.
dos Santos NF, Avino VC, Galvis-Ovallos F, Pereira-Chioccola VL, Moreira MAB, Romariz APPL, et al. Use of miltefosine to treat canine visceral leishmaniasis caused by Leishmania infantum in Brazil. Parasit Vectors. 2019;12:79.
Article
Google Scholar
Manna L, Corso R, Galiero G, Cerrone A, Muzj P, Gravino AE. Long-term follow-up of dogs with leishmaniosis treated with meglumine antimoniate plus allopurinol versus miltefosine plus allopurinol. Parasit Vectors. 2015;8:289.
Article
Google Scholar
Andrade HM, Toledo VPCP, Pinheiro MB, Guimarães TMPD, Oliveira NC, Castro JA, et al. Evaluation of miltefosine for the treatment of dogs naturally infected with L. infantum (=L. chagasi) in Brazil. Vet Parasitol. 2011;181:83–90.
Article
CAS
Google Scholar
Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol. 2007;5:873–82.
Article
CAS
Google Scholar
Sereno D, Cavaleyra M, Zemzoumi K, Maquaire S, Ouaissi A. Axenically grown amastigotes of Leishmania infantum used as an in vitro model to investigate the pentavalent antimony mode of action. Antimicrob Agents Chemother. 1998;42:3097–102.
Article
CAS
Google Scholar
Kumar D, Kulshrestha A, Singh R, Salotra P. In vitro susceptibility of field isolates of Leishmania donovani to miltefosine and amphotericin B: correlation with sodium antimony gluconate susceptibility and implications for treatment in areas of endemicity. Antimicrob Agents Chemother. 2009;53:835–8.
Article
CAS
Google Scholar
Eberhardt E, Bulté D, van Bockstal L, van den Kerkhof M, Cos P, Delputte P, et al. Miltefosine enhances the fitness of a non-virulent drug-resistant Leishmania infantum strain. J Antimicrob Chemother. 2019;74:395–406.
Article
CAS
Google Scholar
Deep DK, Singh R, Bhandari V, Verma A, Sharma V, Wajid S, et al. Increased miltefosine tolerance in clinical isolates of Leishmania donovani is associated with reduced drug accumulation, increased infectivity and resistance to oxidative stress. PLoS Negl Trop Dis. 2017;11:e0005641.
Article
Google Scholar
Rai K, Cuypers B, Bhattarai NR, Uranw S, Berg M, Ostyn B, et al. Relapse after treatment with miltefosine for visceral leishmaniasis is associated with increased infectivity of the infecting Leishmania donovani strain. MBio. 2013;4:11–3.
Article
Google Scholar
da Silva R, Sacks LD. Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect Immun. 1987;55:2802–6.
Article
Google Scholar
Abrantes TR, de Madeira MF, da Silva DA, dos Carolina Perié SFS, Mendes Junior AA, Menezes RC, et al. Identification of canine visceral leishmaniasis in a previously unaffected area by conventional diagnostic techniques and cell-block fixation. Rev Inst Med Trop Sao Paulo. 2016;58:3.
Article
Google Scholar
Campo MP, Madeira MF, Silva DA, Solcà MS, Espíndola OM, Mendes Junior AAV, et al. Accuracy of quantitative polymerase chain reaction in samples of frozen and paraffin-embedded healthy skin for the diagnosis of canine visceral leishmaniasis. Arq Bras Med Vet Zootec. 2017;69:1443–50.
Article
Google Scholar
LeishVet. Therapy for canine leishmaniosis. https://www.leishvet.org/fact-sheet/therapy/. Accessed 16 Nov 2021.
van Meerloo J, Kaspers GJL, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237–45.
Article
Google Scholar
Donega M, Mello S, Moraes R, Jain S, Tekwani B, Cantrell C. Pharmacological activities of Cilantroʼs aliphatic aldehydes against Leishmania donovani. Planta Med. 2014;80:1706–11.
Article
CAS
Google Scholar
Ouellette M, Fase-Fowler F, Borst P. The amplified H circle of methotrexate-resistant Leishmania tarentolae contains a novel P-glycoprotein gene. EMBO J. 1990;9:1027–33.
Article
CAS
Google Scholar
Sacks DL, Hieny S, Sher A. Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes. J Immunol. 1985;135:564–9.
CAS
PubMed
Google Scholar
Alcolea PJ, Alonso A, Degayón MA, Moreno-Paz M, Jiménez M, Molina R, et al. In vitro infectivity and differential gene expression of Leishmania infantum metacyclic promastigotes: negative selection with peanut agglutinin in culture versus isolation from the stomodeal valve of Phlebotomus perniciosus. BMC Genomics. 2016;17:375–89.
Article
Google Scholar
Maltezou HC. Drug resistance in visceral leishmaniasis. J Biomed Biotechnol. 2010;2010:617521.
Article
Google Scholar
Carrió J, Portús M. In vitro susceptibility to pentavalent antimony in Leishmania infantum strains is not modified during in vitro or in vivo passages but is modified after host treatment with meglumine antimoniate. BMC Pharmacol. 2002;2:11.
Article
Google Scholar
Giunchetti RC, Silveira P, Resende LA, Leite JC, de Melo-Júnior OAO, Rodrigues-Alves ML, et al. Canine visceral leishmaniasis biomarkers and their employment in vaccines. Vet Parasitol. 2019;271:87–97.
Article
CAS
Google Scholar
van Bockstal L, Bulté D, Hendrickx S, Sadlova J, Volf P, Maes L, et al. Impact of clinically acquired miltefosine resistance by Leishmania infantum on mouse and sand fly infection. Int J Parasitol Drugs Drug Resist. 2020;13:16–21.
Article
Google Scholar
Mondelaers A, Hendrickx S, van Bockstal L, Maes L, Caljon G. Miltefosine-resistant Leishmania infantum strains with an impaired MT/ROS3 transporter complex retain amphotericin B susceptibility. J Antimicrob Chemother. 2018;73:392–4.
Article
CAS
Google Scholar
Gómez Pérez V, García-Hernandez R, Corpas-López V, Tomás AM, Martín-Sanchez J, Castanys S, et al. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum. Int J Parasitol Drugs Drug Resist. 2016;6:133–9.
Article
Google Scholar
Maia C, Nunes M, Marques M, Henriques S, Rolão N, Campino L. In vitro drug susceptibility of Leishmania infantum isolated from humans and dogs. Exp Parasitol. 2013;135:36–41.
Article
CAS
Google Scholar
Ministério da saúde (BR). Nota Técnica No. 232/2013. https://www.gov.br/saude/pt-br/composicao/conjur/demandas-judiciais/notas-tecnicas/notas-tecnicas-medicamentos/notas-tecnicas/a/anfotericina-b-atualizado-em-04-12-2015.pdf/view. Accessed 18 Sep 2021.
Kamau SW, Nunez R, Grimm F. Flow cytometry analysis of the effect of allopurinol and the dinitroaniline compound (Chloralin) on the viability and proliferation of Leishmania infantum promastigotes. BMC Pharmacol. 2001;1:1.
Article
CAS
Google Scholar
Dias de ÁFLR, Ayresda ECBS, de Oliveira Martins DT, Maruyama FH, de Oliveira RG, de Carvalho MR, et al. Comparative study of the use of miltefosine, miltefosine plus allopurinol, and allopurinol in dogs with visceral leishmaniasis. Exp Parasitol. 2020;217:107947.
Article
Google Scholar
Doehl JSP, Bright Z, Dey S, Davies H, Magson J, Brown N, et al. Skin parasite landscape determines host infectiousness in visceral leishmaniasis. Nat Commun. 2017;8:57.
Article
Google Scholar