World Health Organization. Vector-borne diseases. 2020. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases.
Maitra A, Cunha-Machado AS, de Souza Leandro A, Costa FM, Scarpassa VM. Exploring deeper genetic structures: Aedes aegypti in Brazil. Acta Trop. 2019;195:68–77.
PubMed
Google Scholar
Bowman LR, Donegan S, McCall PJ. Is Dengue vector control deficient in effectiveness or evidence?: systematic review and meta-analysis. PLoS Negl Trop Dis. 2016;10:e0004551.
PubMed
PubMed Central
Google Scholar
World Health Organization. Dengue guidelines for diagnosis, treatment, prevention and control: new edition. Geneva: World Health Organization; 2009.
Google Scholar
Abad-Franch F, Zamora-Perea E, Luz SLB. Mosquito-disseminated insecticide for citywide vector control and its potential to block arbovirus epidemics: entomological observations and modeling results from Amazonian Brazil. PLoS Med. 2017;14:e1002213.
PubMed
PubMed Central
Google Scholar
Wang S, Jacobs-Lorena M. Paratransgenesis applications: fighting malaria with engineered mosquito symbiotic bacteria. In: Vector microbiome and innate immunity of arthropods. Elsevier Inc. 2017; 1:219–234.
Evans BR, Kotsakiozi P, Costa-da-Silva AL, Ioshino RS, Garziera L, Pedrosa MC, et al. Transgenic Aedes aegypti mosquitoes transfer genes into a natural population. Sci Rep. 2019;9:13047.
PubMed
PubMed Central
Google Scholar
Scolari F, Casiraghi M, Bonizzoni MM. Aedes spp. and their microbiota: a review. Front Microbiol. 2019;10:2036.
PubMed
PubMed Central
Google Scholar
Ricci I, Damiani C, Capone A, DeFreece C, Rossi P, Favia G. Mosquito/microbiota interactions: from complex relationships to biotechnological perspectives. Curr Opin Microbiol. 2012;15:278–84.
PubMed
Google Scholar
Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA. 1997;94:3274–8.
CAS
PubMed
PubMed Central
Google Scholar
Bongio NJ, Lampe DJ. Inhibition of Plasmodium berghei development in mosquitoes by effector proteins secreted from Asaia sp. bacteria using a novel native secretion signal. PLoS ONE. 2015;10:e0143541.
PubMed
PubMed Central
Google Scholar
Shane JL, Grogan CL, Cwalina C, Lampe DJ. Blood meal-induced inhibition of vector-borne disease by transgenic microbiota. Nat Commun. 2018;9:4127.
PubMed
PubMed Central
Google Scholar
Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector competence for arboviruses. Viruses. 2014;6:4294–313. https://doi.org/10.3390/v6114294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Landmann F. The Wolbachia endosymbionts. Microbiol Spectr. 2019;7:7.2.25.
Google Scholar
Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23:2727–39.
CAS
PubMed
PubMed Central
Google Scholar
Chouaia B, Rossi P, Epis S, Mosca M, Ricci I, Damiani C, et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 2012;12:S2.
CAS
PubMed
PubMed Central
Google Scholar
Mitraka E, Stathopoulos S, Siden-Kiamos I, Christophides GK, Louis C. Asaia accelerates larval development of Anopheles gambiae. Pathog Glob Health. 2013;107:305–11.
CAS
PubMed
PubMed Central
Google Scholar
Gaio AdO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae) (L.). Parasites Vectors. 2011;4:105.
PubMed Central
Google Scholar
Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol. 2005;21:568–72.
PubMed
Google Scholar
Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe. 2011;10:307–10.
CAS
PubMed
PubMed Central
Google Scholar
Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls Dengue virus infection. PLOS Pathog. 2008;4:e1000098.
PubMed
PubMed Central
Google Scholar
Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5:e1000423.
PubMed
PubMed Central
Google Scholar
Villegas LEM, Campolina TB, Barnabe NR, Orfano AS, Chaves BA, Norris DE, et al. Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis. PLoS ONE. 2018;13:e0190352.
PubMed
PubMed Central
Google Scholar
Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, Pascale JM, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and Dengue virus influences vector competence. PLoS Negl Trop Dis. 2012;6:e1561.
PubMed
PubMed Central
Google Scholar
Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398.
PubMed
PubMed Central
Google Scholar
Apte-Deshpande AD, Paingankar MS, Gokhale MD, Deobagkar DN. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus. Indian J Med Res. 2014;139:762–8.
PubMed
PubMed Central
Google Scholar
Apte-Deshpande A, Paingankar M, Gokhale MD, Deobagkar DN. Serratia odorifera a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to Dengue-2 virus. PLoS ONE. 2012;7:e40401.
CAS
PubMed
PubMed Central
Google Scholar
Mourya DT, Pidiyar V, Patole M, Gokhale MD, Shouche Y. Effect of midgut bacterial flora of Aedes aegypti on the susceptibility of mosquitoes to Dengue viruses. WHO Regional Office for South-East Asia, vol. 26. 2002. pp. 190–4.
Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011;332:855–8.
CAS
PubMed
PubMed Central
Google Scholar
Bahia AC, Dong Y, Blumberg BJ, Mlambo G, Tripathi A, BenMarzouk-Hidalgo OJ, et al. Exploring Anopheles gut bacteria for Plasmodium blocking activity. Environ Microbiol. 2014;16:2980–94.
CAS
PubMed
PubMed Central
Google Scholar
Cunha MS, Esposito DL, Rocco IM, Maeda AY, Vasami FG, Nogueira JS, et al. First complete genome sequence of Zika virus (Flaviviridae, Flavivirus) from an autochthonous transmission in Brazil. Genome Announc. 2016;4:e00032-16.
PubMed
PubMed Central
Google Scholar
Gonçalves CM, Melo FF, Bezerra JM, Chaves BA, Silva BM, Silva LD, et al. Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city. Parasit Vectors. 2014;7:320.
PubMed
PubMed Central
Google Scholar
Booth C, Bergan T, Bennett P, Brown A, Colwell R, Craig A, et al. Methods in microbiology. In: Immunology of infection. 2002;32.
Lacey LA. Manual of techniques in insect pathology (Biological techniques series). Cambridge: Academic Press; 1997.
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
CAS
Google Scholar
Wang Y, Qian PY. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE. 2009;4:e7401.
PubMed
PubMed Central
Google Scholar
Yang B, Wang Y, Qian PY. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 2016;17:135.
Google Scholar
Galkiewicz JP, Kellogg CA. Cross-kingdom amplification using bacteria-specific primers: complications for studies of coral microbial ecology. Appl Environ Microbiol. 2008;74:7828–31.
CAS
PubMed
PubMed Central
Google Scholar
Sharma U, Singh S. Insect vectors of Leishmania: distribution, physiology and their control. J Vector Borne Dis. 2008;45:255–72. Retraction in: J Vector Borne Dis. 2012;49:54.
Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M. Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences. BMC Genomics. 2011;12:S4.
CAS
PubMed
PubMed Central
Google Scholar
Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14:1232–9.
CAS
PubMed
PubMed Central
Google Scholar
Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe. 2016;8:771–4.
Google Scholar
Secundino NFC, Chaves BA, Orfano AS, Silveira KRD, Rodrigues NB, Campolina TB, et al. Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicates the natural transmission process. Parasit Vectors. 2017;10:346.
PubMed
PubMed Central
Google Scholar
Rojas-Pinzón PA, Dussán J. Contribution of Lysinibacillus sphaericus hemolysin and chitin- binding protein in entomopathogenic activity against insecticide resistant Aedes aegypti. World J Microbiol Biotechnol. 2017;33:181.
PubMed
Google Scholar
Bai L, Wang L, Vega-Rodríguez J, Wang G, Wang S. A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to Plasmodium infection through activation of mosquito immune responses. Front Microbiol. 2019;10:1580.
PubMed
PubMed Central
Google Scholar
Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, et al. A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe. 2019;25:101-112.e5.
CAS
PubMed
Google Scholar
Campolina TB, Villegas LEM, Monteiro CC, Pimenta PFP, Secundino NFC. Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLoS Negl Trop Dis. 2020;14:e0008666.
PubMed
PubMed Central
Google Scholar
Javed F, Manzoor KN, Ali M, Haq IU, Khan AA, Zaib A, Manzoor S. Zika virus: what we need to know? J Basic Microbiol. 2018;58:3–16.
PubMed
Google Scholar
Russell K, Hills SL, Oster AM, Porse CC, Danyluk G, Cone M, et al. Male-to-female sexual transmission of Zika Virus-United States, january-april 2016. Clin Infect Dis. 2017;64:211–3.
PubMed
Google Scholar
Costa LC, Veiga RV, Oliveira JF, Rodrigues MS, Andrade RFS, Paixão ES, et al. New insights on the Zika virus arrival in the Americas and spatiotemporal reconstruction of the epidemic dynamics in Brazil. Viruses. 2020;13:12.
PubMed Central
Google Scholar
Pan American Health Organization/World Health Organization. Cases of Zika virus disease. Washington, D.C: PAHO/WHO; 2020.
Google Scholar
Lowe R, Barcellos C, Brasil P, Cruz OG, Honório NA, Kuper H, et al. The Zika virus epidemic in Brazil: from discovery to future implications. Int J Environ Res Public Health. 2018;15:96.
PubMed Central
Google Scholar
Muturi EJ, Dunlap C, Ramirez JL, Rooney AP, Kim C-H. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol Ecol. 2019. https://doi.org/10.1093/femsec/fiy213.
Article
PubMed
Google Scholar
Yadav KK, Bora A, Datta S, Chandel K, Gogoi HK, Prasad GBKS, et al. Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh, India. Parasites Vectors. 2015;8:641.
PubMed
PubMed Central
Google Scholar
Champion CJ, Xu J. The impact of metagenomic interplay on the mosquito redox homeostasis. Free Radic Biol Med. 2017;105:79–85.
CAS
PubMed
Google Scholar
Gusmão DS, Santos AV, Marini DC, Bacci M, Berbert-Molina MA, Lemos FJA. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop. 2010;115:275–81.
PubMed
Google Scholar
David MR, dos Santos LMB, Vicente ACP, Maciel-de-Freitas R. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem Inst Oswaldo Cruz. 2016;111:577–87.
PubMed
PubMed Central
Google Scholar
Dickson LB, Ghozlane A, Volant S, Bouchier C, Ma L, Vega-Rúa A, et al. Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome. Parasit Vectors. 2018;11:207.
PubMed
PubMed Central
Google Scholar
Ramos-Nino ME, Fitzpatrick DM, Eckstrom KM, Tighe S, Hattaway LM, Hsueh AN, et al. Metagenomic analysis of Aedes aegypti and Culex quinquefasciatus mosquitoes from Grenada,, West Indies. PLoS ONE. 2020;15:e0231047.
CAS
PubMed
PubMed Central
Google Scholar
Yadav KK, Datta S, Naglot A, Bora A, Hmuaka V, Bhagyawant S, et al. Diversity of cultivable midgut microbiota at different stages of the Asian tiger tosquito, Aedes albopictus from Tezpur, India. PLoS ONE. 2016;11:e0167409.
PubMed
PubMed Central
Google Scholar
Chandel K, Mendki MJ, Parikh RY, Kulkarni G, Tikar SN, Sukumaran D, et al. Midgut microbial community of Culex quinquefasciatus mosquito populations from India. PLoS ONE. 2013;8:e80453.
PubMed
PubMed Central
Google Scholar
Tchioffo MT, Boissière A, Churcher TS, Abate L, Gimonneau G, Nsango SE, et al. Modulation of malaria infection in Anopheles gambiae mosquitoes exposed to natural midgut bacteria. PLoS ONE. 2013;8:e81663.
PubMed
PubMed Central
Google Scholar
Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013;6:146.
PubMed
PubMed Central
Google Scholar
Minard G, Tran FH, Raharimalala FN, Hellard E, Ravelonandro P, Mavingui P, et al. Prevalence, genomic and metabolic profiles of Acinetobacter and Asaia associated with field-caught Aedes albopictus from Madagascar. FEMS Microbiol Ecol. 2013;83:63–73.
CAS
PubMed
Google Scholar
Schumann P, Weiss N, Stackebrandt E. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol. 2001;51:1007–10.
CAS
PubMed
Google Scholar
Bakalidou A, Kämpfer P, Berchtold M, Kuhnigk T, Wenzel M, König H. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis. Int J Syst Evol Microbiol. 2002;52:1185–92.
CAS
PubMed
Google Scholar
Valiente Moro C, Tran FH, Nantenaina Raharimalala F, Ravelonandro P, Mavingui P. Diversity of culturable bacteria including Pantoea in wild mosquito Aedes albopictus. BMC Microbiol. 2013;13:70.
PubMed
PubMed Central
Google Scholar
Guégan M, Zouache K, Démichel C, Minard G, Van Tran V, Potier P, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome. 2018;6:49.
PubMed
PubMed Central
Google Scholar
Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldaña MA, et al. Microbiome interaction networks and community structure from laboratory-reared and field-collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquito vectors. Front Microbiol. 2018;9:2160.
PubMed
PubMed Central
Google Scholar
Agarwal A, Parida M, Dash PK. Impact of transmission cycles and vector competence on global expansion and emergence of arboviruses. Rev Med Virol. 2017;27:e1941.
Google Scholar
Hardy JL, Houk EJ, Kramer LD, Reeves WC. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol. 1983;28:229–62.
CAS
PubMed
Google Scholar
Schneider BS, Higgs S. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans R Soc Trop Med Hyg. 2008;102:400–8.
PubMed
Google Scholar
Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, Bernard KA. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog. 2007;3:1262–70.
CAS
PubMed
Google Scholar
Bonica MB, Goenaga S, Martin ML, Feroci M, Luppo V, Muttis E, et al. Vector competence of Aedes aegypti for different strains of Zika virus in Argentina. PLoS Negl Trop Dis. 2019;13:e0007433.
PubMed
PubMed Central
Google Scholar
Chouin-Carneiro T, David MR, Nogueira FB, Santos FdB, Lourenço-de-Oliveira R. Zika virus transmission by Brazilian Aedes aegypti and Aedes albopictus is virus dose and temperature-dependent. PLoS Negl Trop Dis. 2020;14:e0008527.
CAS
PubMed
PubMed Central
Google Scholar
Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol. 2012;21:5138–50.
CAS
PubMed
Google Scholar
Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol. 2011;75:377–89.
CAS
PubMed
Google Scholar
Möhlmann TWR, Vogels CBF, Göertz GP, Pijlman GP, ter Braak CJF, te Beest DE, et al. Impact of gut bacteria on the infection and transmission of pathogenic arboviruses by biting midges and mosquitoes. Microb Ecol. 2020;80:703–17.
PubMed
PubMed Central
Google Scholar
Rosso F, Tagliapietra V, Albanese D, Pindo M, Baldacchino F, Arnoldi D, et al. Reduced diversity of gut microbiota in two Aedes mosquitoes species in areas of recent invasion. Sci Rep. 2018;8:16091.
PubMed
PubMed Central
Google Scholar
Zouache K, Michelland RJ, Failloux A-B, Grundmann GL, Mavingui P. Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector. Mol Ecol. 2012;21:2297–309.
CAS
PubMed
Google Scholar
Qing W, Zhijing X, Guangfu Y, Fengxia M, Qiyong L, Zhong Z, et al. Variation in the microbiota across different developmental stages of Aedes albopictus is affected by ampicillin exposure. MicrobiologyOpen. 2020;9:e1026.
PubMed Central
Google Scholar