Wang JL, Li TT, Huang SY, Cong W, Zhu XQ. Major parasitic diseases of poverty in mainland China: perspectives for better control. Infect Dis Poverty. 2016;5:67.
PubMed
PubMed Central
Google Scholar
Bisseru B. The prevalence of Angiostrongylus cantonensis larvae collected from the giant African snail, Achatina fulica in west Malaysia and Singapore. Southeast Asian J Trop Med Public Health. 1971;2:523–6.
CAS
PubMed
Google Scholar
Hwang KP, Chen ER. Clinical studies on Angiostrongyliasis cantonensis among children in Taiwan. Southeast Asian J Trop Med Public Health. 1991;22:194–9.
PubMed
Google Scholar
Courdurier J, Gillon JC, Malarde L. Realization of the cycle of Angiostrongylus cantonensis (Chen) in the laboratory. 3. Chronic lesions of the lungs in rats experimentally infected. Bull Soc Pathol Exot Filiales. 1968;61:254–9.
CAS
PubMed
Google Scholar
Guilhon J, Mishra GS, Barnabe R. Effect of different nematodicides on Angiostrongylus cantonensis (Chen, 1935) at different periods of its development, in the rat. C R Acad Sci Hebd Seances Acad Sci D. 1973;676:857–60.
CAS
PubMed
Google Scholar
Hu M, Lok JB, Ranjit N, Massey HC, Sternberg PW, et al. Structural and functional characterisation of the fork head transcription factor-encodinggene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida). Int J Parasitol. 2010;40:405–15.
CAS
PubMed
Google Scholar
Chen KY, Chiu CH, Wang LC. Anti-apoptotic effects of Sonic hedgehog signalling through oxidative stress reduction in astrocytes co-cultured with excretory-secretory products of larval Angiostrongylus cantonensis. Sci Rep. 2017;7:41574.
CAS
PubMed
PubMed Central
Google Scholar
Huang HC, Yao LL, Song ZM, Li XP, Hua QQ, Li Q, et al. Development specific differences in the proteomics of Angiostrongylus cantonensis. PLoS ONE. 2013;8: e76982.
CAS
PubMed
PubMed Central
Google Scholar
Yii CY. Clinical observations on eosinophilic meningitis and meningoencephalitis caused by Angiostrongylus cantonensis on Taiwan. Am J Trop Med Hyg. 1976;25:233–49.
CAS
PubMed
Google Scholar
Martins YC, Tanowitz HB, Kazacos KR. Central nervous system manifestations of Angiostrongylus cantonensis infection. Acta Trop. 2015;141:46–53.
PubMed
Google Scholar
Shin MH, Lee YA, Min DY. Eosinophil-mediated tissue inflammatory responses in helminth infection. Korean J Parasitol. 2009;47:125–31.
PubMed
PubMed Central
Google Scholar
Egesten A, Alumets J, von Mecklenburg C, Palmegren M, Olsson I. Localization of eosinophil cationic protein, major basic protein, and eosinophil peroxidase in human eosinophils by immunoelectron microscopic technique. J Histochem Cytochem. 1986;34:1399–403.
CAS
PubMed
Google Scholar
Peters MS, Rodriguez M, Gleich GJ. Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy. Lab Invest. 1986;54:656–62.
CAS
PubMed
Google Scholar
Weiss SJ, Test ST, Eckmann CM, Roos D, Regiani S. Brominating oxidants generated by human eosinophils. Science. 1986;234:200–3.
CAS
PubMed
Google Scholar
Mayeno AN, Curran AJ, Roberts RL, Foote CS. Eosinophils preferentially use bromide to generate halogenating agents. J Biol Chem. 1989;264:5660–8.
CAS
PubMed
Google Scholar
Thomas EL, Bozeman PM, Jefferson MM, King CC. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines. J Biol Chem. 1995;270:2906–13.
CAS
PubMed
Google Scholar
Sun WW, Yan XM, Shi Q, Zhang YJ, Huang JT, Huang HC, et al. Downregulated RPS-30 in Angiostrongylus cantonensis L5 plays a defensive role against damage due to oxidative stress. Parasites Vectors. 2020;13:617.
CAS
PubMed
PubMed Central
Google Scholar
Kasai K, Hirabayashi J. Galectins: a family of animal lectins that decipher glycocodes. J Biol Chem. 1996;119:1–8.
CAS
Google Scholar
Cooper DN. Galectinomics: finding themes in complexity. Biochim Biophys Acta. 2002;1572:209–31.
CAS
PubMed
Google Scholar
Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim Biophys Acta. 2002;1572:232–54.
CAS
PubMed
Google Scholar
Seelenmeyer C, Stegmayer C, Nickel W. Unconventional secretion of fibroblast growth factor 2 and galectin-1 does not require shedding of plasma membrane-derived vesicles. FEBS Lett. 2008;582:1362–8.
CAS
PubMed
Google Scholar
Yang RY, Rabinovich GA, Liu FT. Galectins: structure, function and therapeutic potential. Expert Rev. 2008;10:e17.
Google Scholar
Wang W, Yuan C, Wang S, Song X, Xu L, Yan R, et al. Transcriptional and proteomic analysis reveal recombinant galectins of Haemonchus contortus down-regulated functions of goat PBMC and modulation of several signaling cascades in vitro. J Proteom. 2014;98:123–37.
CAS
Google Scholar
Shi XM, Xiao MR, Xie ZY, Shi Q, Zhang YJ, Leavenworth JMW, et al. Angiostrongylus cantonensis galectin-1 interacts with Annexin A2 to impair the viability of macrophages via activating JNK pathway. Parasites Vectors. 2020;13:183.
CAS
PubMed
PubMed Central
Google Scholar
Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta. 2002;1572:263–73.
CAS
PubMed
Google Scholar
Haudek KC, Patterson RJ, Wang JL. SR proteins and galectins: what’s in a name? Glycobiology. 2010;20:1199–207.
CAS
PubMed
PubMed Central
Google Scholar
Maduzia LL, Yu E, Zhang Y. Caenorhabditis elegans galectins LEC-6 and LEC-10 interact with similar glycoconjugates in the intestine. J Biol Chem. 2011;286:4371–81.
CAS
PubMed
Google Scholar
Takeuchi T, Nemoto-Sasaki Y, Arata Y, Kasai K. Galectin LEC-6 interacts with glycoprotein F57F4.4 to cooperatively regulate the growth of Caenorhabditis elegans. Biol Pharm Bull. 2011;34:1139–42.
CAS
PubMed
Google Scholar
Ideo H, Fukushima K, Gengyo-Ando K, Mitani S, Dejima K, Nomura K, et al. A Caenorhabditis elegans glycolipid-binding galectin functions in host defense against bacterial infection. J Biol Chem. 2009;284:26493–501.
CAS
PubMed
PubMed Central
Google Scholar
Nemoto-Sasaki Y, Kasai K. Deletion of lec-10, a galectin-encoding gene, increases susceptibility to oxidative stress in Caenorhabditis elegans. Biol Pharm Bull. 2009;32:1973–7.
CAS
PubMed
Google Scholar
Arata Y, Hirabayashi J, Kasai K. Sugar binding properties of the two lectin domains of the tandem repeat-type galectin LEC-1 (N32) of Caenorhabditis elegans. Detailed analysis by an improved frontal affinity chromatography method. J Biol Chem. 2001;276:3068–77.
CAS
PubMed
Google Scholar
Arata Y, Akimoto Y, Hirabayashi J, Kasai K, Hirano H. An immunohistochemical study of the 32-kDa galectin (β-galactoside-binding lectin) in the nematode Caenorhabditis elegans. Histochem J. 1996;28:201–7.
CAS
PubMed
Google Scholar
Tomoharu T, Yoko NS, Sugiura K, Arata Y, Kasai K. Galectin LEC-1 plays a defensive role against damage due to oxidative stress in Caenorhabditis elegans. J Biol Chem. 2013;154:455–64.
Google Scholar
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94.
CAS
PubMed
PubMed Central
Google Scholar
Hwang EY, Jeong ES, Park SK, Ha SC, Yu HS, Jang SB. Structural basis for carbohydrate recognition and anti-inflammatory modulation by gastrointestinal nematode parasite Toxascaris leonina galectin. J Biol Chem. 2016;291:25326–38.
CAS
PubMed
PubMed Central
Google Scholar
Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2001. https://doi.org/10.1186/gb-2000-2-1-research0002.
Article
PubMed
Google Scholar
Yan BL, Guo XL, Zhou QJ, Yang Y, Chen XQ, Sun WW, et al. Hc-fau, a novel gene regulating diapause in the nematode parasite Haemonchus contortus. Int J Parasitol. 2014;44:775–86.
CAS
PubMed
Google Scholar
Ramírez-Zacarías JL, Castro-Muñozledo F, Kuri-Harcuch W. Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry. 1992;97:493–7.
PubMed
Google Scholar
Heusschen R, Griffioen AW, Thijssen VL. Galectin-9 in tumor biology: a jack of multiple trades. Biochim Biophys Acta. 2013;1836:177–85.
CAS
PubMed
Google Scholar
Thijssen VL, Griffioen AW. Galectin-1 and -9 in angiogenesis: a sweet couple. Glycobiology. 2014;24:915–20.
CAS
PubMed
Google Scholar
Blaxter M. Caenorhabditis elegans is a nematode. Science. 1998;282:2041–6.
CAS
PubMed
Google Scholar
Bürglin TR, Lobos E, Blaxter ML. Caenorhabditis elegans as a model for parasitic nematodes. Int J Parasitol. 1998;28:395–411.
PubMed
Google Scholar
Aboobaker AA, Blaxter ML. Medical significance of Caenorhabditis elegans. Ann Med. 2000;32:23–30.
CAS
PubMed
Google Scholar
Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today. 1994;15:7–10.
CAS
PubMed
Google Scholar
Lant B, Brent DW. Analysis of apoptosis in Caenorhabditis elegans. Cold Spring Harb Protoc. 2014. https://doi.org/10.1101/pdb.top070458.
Article
PubMed
Google Scholar
Horikawa M, Sakamoto K. Fatty acid metabolism is involved in stress resistance mechanisms of Caenorhabditis elegans. Biochem Biophys Res Commun. 2009;390:1402–7.
CAS
PubMed
Google Scholar
Llopis S, Rodrigo MJ, González N, Genovés S, Zacarías L, Ramón D, et al. β-Cryptoxanthin reduces body fat and increases oxidative stress response in Caenorhabditis elegans model. Nutrients. 2019;11:232.
CAS
PubMed Central
Google Scholar
Brock TJ, Browse J, Watts JL. Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics. 2007;176:865–75.
CAS
PubMed
PubMed Central
Google Scholar
Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, et al. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008;38:709–50.
CAS
PubMed
Google Scholar
Min DY, Lee YA, Ryu JS, Ahn MH, Chung YB, Sim S, et al. Caspase-3-mediated apoptosis of human eosinophils by the tissue-invading helminth Paragonimus westermani. Int Arch Allergy Immunol. 2004;133:357–64.
CAS
PubMed
Google Scholar
Serradell MC, Guasconi L, Cervi L, Chiapello LS, Masih DT. Excretory-secretory products from Fasciola hepatica induce eosinophil apoptosis by a caspase-dependent mechanism. Vet Immunol Immunopathol. 2007;117:197–208.
CAS
PubMed
Google Scholar
Hu M, Lokb JB, Ranjit N, Massey HC Jr, Sternbergc PW, Gassera RB. Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida). Int J Parasitol. 2010;40:405–15.
CAS
PubMed
Google Scholar
Massey HC Jr, Bhopale MK, Li X, Castelletto M, Lok JB. The fork head transcription factor FKTF-1b from Strongyloides stercoralis restores DAF-16 developmental function to mutant Caenorhabditis elegans. Int J Parasitol. 2006;36:347–52.
CAS
PubMed
Google Scholar
Li F, Lok JB, Gassera RB, Korhonen PK, Sandeman MR, Shi D, et al. Hc-daf-2 encodes an insulin-like receptor kinase in the barber’s pole worm, Haemonchus contortus, and restores partial dauer regulation. Int J Parasitol. 2014;44:485–96.
CAS
PubMed
PubMed Central
Google Scholar
Crockett EL. The cold but not hard fats in ectotherms: consequences of lipid restructuring on susceptibility of biological membranes to peroxidation, a review. J Comp Physiol B. 2008;178:795–809.
CAS
PubMed
Google Scholar