Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.
CAS
PubMed
PubMed Central
Google Scholar
Gaythorpe KAM, Hamlet A, Jean K, Garkauskas Ramos D, Cibrelus L, Garske T, et al. The global burden of yellow fever. Elife. 2021;10:1–22.
Google Scholar
Breman JG, Egan A, Keusch GT. The intolerable burden of malaria: a new look at the numbers. Am J Trop Med Hyg. 2001;64:iv–vii.
CAS
PubMed
Google Scholar
World Health Organization—WHO. Vector-borne diseases. https:// www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue
Panamerican Health Organization—PAHO. Reported cases of dengue fever in The Americas, 2019. http://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.htm
Abdul-Ghani R, Mahdy MAK, Al-Eryani SMA, Fouque F, Lenhart AE, Alkwri A, et al. Impact of population displacement and forced movements on the transmission and outbreaks of Aedes-borne viral diseases: dengue as a model. Acta Trop. 2019;197:105066.
PubMed
Google Scholar
Brady OJ, Hay SI. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu Rev Entomol. 2020;65:191–208.
CAS
PubMed
Google Scholar
Rosenberg R, Lindsey NP, Fischer M, Gregory CJ, Hinckley AF, Mead PS, et al. Vital signs: trends in reported vectorborne disease cases — United States and Territories, 2004–2016. MMWR Morb Mortal Wkly Rep. 2018;67:496–501.
PubMed
PubMed Central
Google Scholar
Messina J, Brady O, Pigott D, Brownstein J, Hoen A, Hay S. A global compendium of human dengue virus occurrence. Sci Data. 2014;1:140004.
PubMed
PubMed Central
Google Scholar
Poletti P, Messeri G, Ajelli M, Vallorani R, Rizzo C, Merler S. Transmission potential of chikungunya virus and control measures: the case of Italy. PLoS ONE. 2011;6:e18860.
CAS
PubMed
PubMed Central
Google Scholar
Gould EA, Gallian P, De Lamballerie X, Charrel RN. First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect. 2010;16:1702–4.
CAS
PubMed
Google Scholar
Gjenero-Margan I, Aleraj B, Krajcar D, Lesnikar V, Klobucar A, Pem-Novosel I, et al. Autochthonous dengue fever in Croatia, August-September 2010. Euro Surveill. 2011;16:1–4.
Google Scholar
Beier JC, Wilke ABB, Benelli G. Newer approaches for malaria vector control and challenges of outdoor transmission. Towar Malar Elimin Leap Forw. 2018. https://doi.org/10.5772/intechopen.75513.
Article
Google Scholar
Wilke ABB, Beier JC, Benelli G. Filariasis vector control down-played due to the belief the drugs will be enough—not true! Entomol Gen. 2020;40:15–24.
Google Scholar
Kraemer MUG, Faria NR, Reiner RC, Golding N, Nikolay B, Stasse S, et al. Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015–16: a modelling study. Lancet Infect Dis. 2017;17:330–8.
PubMed
PubMed Central
Google Scholar
Barrett ADT. Yellow Fever in Angola and Beyond—the problem of vaccine supply and demand. N Engl J Med. 2016;375:301–3.
PubMed
Google Scholar
Lizzi KM, Qualls WA, Brown SC, Beier JC. Expanding integrated vector management to promote healthy environments. Trends Parasitol. 2014;30:394–400.
PubMed
PubMed Central
Google Scholar
World Health Organization WHO. Handbook for integrated vector management 2012. Geneva: World Health Organization; 2012.
Google Scholar
Roiz D, Wilson AL, Scott TW, Fonseca DM, Jourdain F, Müller P, et al. Integrated Aedes management for the control of Aedes-borne diseases. PLoS Negl Trop Dis. 2018;12:e0006845.
PubMed
PubMed Central
Google Scholar
World Health Organization—WHO. Vector-borne diseases. 2021. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
Stevens MCAA, Faulkner SC, Wilke ABB, Beier JC, Vasquez C, Petrie WD, et al. Spatially clustered count data provide more efficient search strategies in invasion biology and disease control. Ecol Appl. 2021;31:1–11.
Google Scholar
Wilke ABB, Vasquez C, Carvajal A, Ramirez M, Cardenas G, Petrie WD, et al. Effectiveness of adulticide and larvicide in controlling high densities of Aedes aegypti in urban environments. PLoS ONE. 2021;16:e0246046.
CAS
PubMed
PubMed Central
Google Scholar
Wilke ABB, Vasquez C, Medina J, Carvajal A, Petrie W, Beier JC. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci Rep. 2019;9:8732.
PubMed
PubMed Central
Google Scholar
Wilke ABB, Chase C, Vasquez C, Carvajal A, Medina J, Petrie WD, et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci Rep. 2019;9:15335.
PubMed
PubMed Central
Google Scholar
Mackay AJ, Amador M, Barrera R. An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasit Vectors. 2013;6:225.
CAS
PubMed
PubMed Central
Google Scholar
Mcgregor BL, Connelly CR. A review of the control of Aedes aegypti (Diptera: Culicidae) in the Continental United States a review of the control of Aedes aegypti (Diptera: Culicidae) in the Continental United States. J Med Entomol. 2020;58:10–25.
Google Scholar
Wilke ABB, Benelli G, Beier JC. Beyond frontiers: on invasive alien mosquito species in America and Europe. PLoS Negl Trop Dis. 2020;14:e0007864.
PubMed
PubMed Central
Google Scholar
Wilke ABB, Vasquez C, Cardenas G, Carvajal A, Medina J, Petrie WD, et al. Invasion, establishment, and spread of invasive mosquitoes from the Culex coronator complex in urban areas of Miami-Dade County, Florida. Sci Rep. 2021;11:14620.
CAS
PubMed
PubMed Central
Google Scholar
Benelli G, Wilke ABB, Beier JC. Aedes albopictus (Asian Tiger Mosquito). Trends Parasitol. 2020;36:942–3.
PubMed
Google Scholar
Alto BW, Connelly CR, Meara GFO, Hickman D, Karr N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile Virus. Vector Borne Zoonotic Dis. 2014;14:606–14.
PubMed
PubMed Central
Google Scholar
Roche B, Léger L, L’Ambert G, Lacour G, Foussadier R, Besnard G, et al. The spread of Aedes albopictus in Metropolitan France: contribution of environmental drivers and human activities and predictions for a near future. PLoS ONE. 2015;10:1–13.
Google Scholar
Cebri S. A literature review of host feeding patterns of invasive Aedes mosquitoes in Europe. Insects. 2020;11:848.
Google Scholar
Maciel-de-Freitas R, Eiras ÁE, Lourenço-de-Oliveira R. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz. 2006;101:321–5.
PubMed
Google Scholar
Medeiros-Sousa AR, Fernandes A, Ceretti-Junior W, Wilke ABB, Marrelli MT. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci Rep. 2017;7:17826.
PubMed
PubMed Central
Google Scholar
Sudia WD. Battery-operated light trap, an improved model. Mosq News. 1962. p. 265.
Wilke ABB, Carvajal A, Medina J, Anderson M, Nieves VJ, Ramirez M, et al. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. Samy AM, editor. PLoS One 2019;14:e0212688. https://doi.org/10.1371/journal.pone.0212688
Darsie RF Jr, Morris CD. Keys to the adult females and fourth-instar larvae of the mosquitoes of Florida (Diptera, Culicidae), vol. 1, 1st edn. Tech Bull Florida Mosq Cont Assoc; 2000.
Google Scholar
Hutcheson K. A test for comparing diversities based on the Shannon formula. J Theor Biol. 1970;29:151–4.
CAS
PubMed
Google Scholar
Colwell RK. Biodiversity: concepts, patterns, and measurement. Communities Ecosyst. 2009. p. 257–64.
Sheldon AL. Equitability indices: dependence on the species count. Ecology. 1969;50:466–7.
Google Scholar
Anderson MJ. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online. 1–15 (2017) Doi:https://doi.org/10.1002/9781118445112.stat07841.
Alencar J, De Mello CF, Guimarães AÉ, Gil-Santana HR, Dos Santos SJ, Santos-Mallet JR, et al. Culicidae community composition and temporal dynamics in Guapiaçu ecological reserve, Cachoeiras de Macacu, Rio de Janeiro, Brazil. PLoS ONE. 2015;10:1–16.
Google Scholar
Clarke KR. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 1993;18:117–43.
Google Scholar
Hammer Ø, Harper DATT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9.
Google Scholar
Zeger SL, Liang K-Y, Albert PS. Models for longitudinal data: a generalized estimating equation approach. Biometrics. 1988;44:1049.
CAS
PubMed
Google Scholar
De Carvalho GC, Ceretti-Junior W, Barrio-Nuevo KM, Wilk-da-Silva R, Christe RO, De Paula MB, et al. Composition and diversity of mosquitoes (Diptera: Culicidae) in urban parks in the South region of the city of São Paulo. Brazil Biota Neotrop. 2017;17:e20160274.
Google Scholar
Petruff TA, McMillan JR, Shepard JJ, Andreadis TG, Armstrong PM. Increased mosquito abundance and species richness in Connecticut, United States 2001–2019. Sci Rep. 2020;10:1–14.
Google Scholar
Lühken R, Pfitzner WP, Börstler J, Garms R, Huber K, Schork N, et al. Field evaluation of four widely used mosquito traps in Central Europe. Parasit Vectors. 2014;7:1–11.
Google Scholar
Li Y, Su X, Zhou G, Zhang H, Puthiyakunnon S, Shuai S, et al. Comparative evaluation of the efficiency of the BG-Sentinel trap, CDC light trap and Mosquito-oviposition trap for the surveillance of vector mosquitoes. Parasit Vectors. 2016;9:446.
PubMed
PubMed Central
Google Scholar
Gorsich EE, Beechler BR, van Bodegom PM, Govender D, Guarido MM, Venter M, et al. A comparative assessment of adult mosquito trapping methods to estimate spatial patterns of abundance and community composition in southern Africa. Parasit Vectors. 2019;12:462.
PubMed
PubMed Central
Google Scholar
Wilke ABB, Vasquez C, Carvajal A, Medina J, Chase C, Cardenas G, et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci Rep. 2020;10:12925.
CAS
PubMed
PubMed Central
Google Scholar
Wilke ABB, Wisinski BF, Benelli G, Vasquez C, Mutebi J, Petrie WD, et al. Local conditions favor dengue transmission in the contiguous United States. Entomol Gen. 2021;41:523–9.
Google Scholar
Sinka ME, Bangs MJ, Manguin S, Rubio-palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.
PubMed
PubMed Central
Google Scholar
Ferraguti M, Martínez-de la Puente J, Roiz D, Ruiz S, Soriguer R, Figuerola J. Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep. 2016;6:29002.
CAS
PubMed
PubMed Central
Google Scholar
Centers for Disease Control and Prevention. Mosquito species in which West Nile virus has been detected. 2017. https://www.cdc.gov/westnile/resources/pdfs/MosquitoSpecies1999-2012.pdf
Burkett-Cadena ND, Vittor AY. Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic Appl Ecol. 2018;26:101–10.
PubMed
Google Scholar
Dunphy BM, Kovach KB, Gehrke EJ, Field EN, Rowley WA, Bartholomay LC, et al. Long-term surveillance defines spatial and temporal patterns implicating Culex tarsalis as the primary vector of West Nile virus. Sci Rep. 2019;9:1–10.
Google Scholar
Weaver SC. Urbanization and geographic expansion of zoonotic arboviral diseases: mechanisms and potential strategies for prevention. Trends Microbiol. 2013;21:360–3.
CAS
PubMed
PubMed Central
Google Scholar
Dirzo R, Young H, Galetti M, Ceballos G, Nick J, Collen B. Defaunation in the Anthropocene. Science. 2014;345:401.
CAS
PubMed
Google Scholar
Multini LC, Wilke ABB, Marrelli MT. Neotropical Anopheles (Kerteszia) mosquitoes associated with bromeliad-malaria transmission in a changing world. Acta Trop. 2020;205:105413.
PubMed
Google Scholar
Souza D, Goes D, Paula D, Road SP, Tropical M, Janeiro D, et al. Genomic surveillance of yellow fever virus epidemic waves in São Paulo, Brazil, 2017–2018. PLOS Pathog. 2020;16:e1008699.
PubMed
PubMed Central
Google Scholar
Abreu FV, Ribeiro IP, Ferreira-de-Brito A, Santos AA, Miranda RM, Bonelly ID, et al. Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016–2018. Emerg Microbes Infect. 2019;8:218–31.
PubMed
PubMed Central
Google Scholar
Lorenz C, Azevedo TS, Virginio F, Aguiar BS, Chiaravalloti-Neto F, Suesdek L. Impact of environmental factors on neglected emerging arboviral diseases. PLoS Negl Trop Dis. 2017;11:1–19.
Google Scholar
Multini LC, de Souza AL, Marrelli MT, Wilke AB. The influence of anthropogenic habitat fragmentation on the genetic structure and diversity of the malaria vector Anopheles cruzii (Diptera: Culicidae). Sci Rep. 2020;10:18018.
CAS
PubMed
PubMed Central
Google Scholar
Laporta GZ, de Prado PIKL, Kraenkel RA, Coutinho RM, Sallum MAM. Biodiversity can help prevent malaria outbreaks in tropical forests. PLoS Negl Trop Dis. 2013;7:e2139.
PubMed
PubMed Central
Google Scholar
Zohdy S, Schwartz TS, Oaks JR. The coevolution effect as a driver of spillover. Trends Parasitol. 2019;35:399–408.
PubMed
Google Scholar
Multini LC, Marrelli MT, Beier JC, Wilke ABB. Increasing complexity threatens the elimination of Extra-Amazonian malaria in Brazil. Trends Parasitol. 2019;35:383–7.
PubMed
Google Scholar
Laporta GZ, Burattini MN, Levy D, Fukuya LA, de Oliveira TMP, Maselli LMF, et al. Plasmodium falciparum in the southeastern Atlantic forest: a challenge to the bromeliad-malaria paradigm? Malar J. 2015;14:181.
PubMed
PubMed Central
Google Scholar
Taipe-Lagos CB, Natal D. Culicidae mosquito abundance in a preserved metropolitan area and its epidemiological implications. Rev Saude Publica. 2003;37:275–9.
PubMed
Google Scholar
Scholte EJ, den Hartog W, Dik M, Schoelitsz B, Brooks M, Schaffner F, et al. Introduction and control of three invasive mosquito species in the Netherlands, July October 2010. Eurosurveillance. 2010;15:1–4.
Google Scholar
Pagac BB, Spring AR, Stawicki JR, Dinh TL, Lura T, Kavanaugh MD, et al. Incursion and establishment of the Old World arbovirus vector Aedes (Fredwardsius) vittatus (Bigot, 1861) in the Americas. Acta Trop. 2021;213:105739.
CAS
PubMed
Google Scholar
Ammar SE, Mclntyre M, Swan T, Kasper J, Derraik JGB, Baker MG, et al. Intercepted mosquitoes at New Zealand’s ports of entry, 2001 to 2018: current status and future concerns. Trop Med Infect Dis. 2019;4:101.
PubMed Central
Google Scholar
Williams GM, Gingrich JB. Comparison of light traps, gravid traps, and resting boxes for West Nile virus surveillance. J Vector Ecol. 2007;32:285–91.
PubMed
Google Scholar
Eiras AE, Buhagiar TS, Ritchie SA. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). J Med Entomol. 2014;51:200–9.
PubMed
Google Scholar
Irisha SR, Moorea SJ, Deruac YA, Brucea J, Camerona MM. Evaluation of gravid traps for the collection of Culex quinquefasciatus, a vector of lymphatic filariasis in Tanzania. Trans R Soc Trop Med Hyg. 2013;107:15–22.
Google Scholar