Rubel F, Brugger K, Chitimia-Dobler L, Dautel H, Meyer-Kayser E, Kahl O. Atlas of ticks (Acari: Argasidae, Ixodidae) in Germany. Exp Appl Acarol. 2021;84(1):183–214. https://doi.org/10.1007/s10493-021-00619-1.
Article
PubMed
PubMed Central
Google Scholar
Chitimia-Dobler L, Schaper S, Riess R, Bitterwolf K, Frangoulidis D, Bestehorn M, et al. Imported Hyalomma ticks in Germany in 2018. Parasit Vectors. 2019;12(1):134. https://doi.org/10.1186/s13071-019-3380-4.
Article
PubMed
PubMed Central
Google Scholar
Randolph SE, Green RM, Hoodless AN, Peacey MF. An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus. Int J Parasitol. 2002;32(8):979–89. https://doi.org/10.1016/s0020-7519(02)00030-9.
Article
PubMed
Google Scholar
Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubalek Z, Foldvari G, et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health. 2014;2:251. https://doi.org/10.3389/fpubh.2014.00251.
Article
PubMed
PubMed Central
Google Scholar
Blazejak K, Raulf MK, Janecek E, Jordan D, Fingerle V, Strube C. Shifts in Borrelia burgdorferi (s.l.) geno-species infections in Ixodes ricinus over a 10-year surveillance period in the city of Hanover (Germany) and Borrelia miyamotoi-specific Reverse Line Blot detection. Parasit Vectors. 2018;11(1):304. https://doi.org/10.1186/s13071-018-2882-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Overzier E, Pfister K, Thiel C, Herb I, Mahling M, Silaghi C. Anaplasma phagocytophilum in questing Ixodes ricinus ticks: comparison of prevalences and partial 16S rRNA gene variants in urban, pasture, and natural habitats. Appl Environ Microbiol. 2013;79(5):1730–4. https://doi.org/10.1128/AEM.03300-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klaus C, Hoffmann B, Hering U, Mielke B, Sachse K, Beer M, et al. Tick-borne encephalitis (TBE) virus prevalence and virus genome characterization in field-collected ticks (Ixodes ricinus) from risk, non-risk and former risk areas of TBE, and in ticks removed from humans in Germany. Clin Microbiol Infect. 2010;16(3):238–44. https://doi.org/10.1111/j.1469-0691.2009.02764.x.
Article
CAS
PubMed
Google Scholar
Zubrikova D, Wittmann M, Honig V, Svec P, Vichova B, Essbauer S, et al. Prevalence of tick-borne encephalitis virus and Borrelia burgdorferi sensu lato in Ixodes ricinus ticks in Lower Bavaria and Upper Palatinate. Germany Ticks Tick Borne Dis. 2020;3:101375. https://doi.org/10.1016/j.ttbdis.2020.101375.
Article
Google Scholar
May K, Jordan D, Fingerle V, Strube C. Borrelia burgdorferi sensu lato and co-infections with Anaplasma phagocytophilum and Rickettsia spp. in Ixodes ricinus in Hamburg, Germany. Med Vet Entomol. 2015;4:425–9. https://doi.org/10.1111/mve.12125.
Article
Google Scholar
Silaghi C, Woll D, Hamel D, Pfister K, Mahling M, Pfeffer M. Babesia spp. and Anaplasma phagocytophilum in questing ticks, ticks parasitizing rodents and the parasitized rodents–analyzing the host-pathogen-vector interface in a metropolitan area. Parasit Vectors. 2012;5:191. https://doi.org/10.1186/1756-3305-5-191.
Article
PubMed
PubMed Central
Google Scholar
Rubel F, Brugger K, Belova OA, Kholodilov IS, Didyk YM, Kurzrock L, et al. Vectors of disease at the northern distribution limit of the genus Dermacentor in Eurasia: D. reticulatus and D. silvarum. Exp Appl Acarol. 2020;1:95–123. https://doi.org/10.1007/s10493-020-00533-y.
Article
Google Scholar
Drehmann M, Springer A, Lindau A, Fachet K, Mai S, Thoma D, et al. The spatial distribution of Dermacentor ticks (Ixodidae) in Germany—evidence of a continuing spread of Dermacentor reticulatus. Front Vet Sci. 2020;7: 578220. https://doi.org/10.3389/fvets.2020.578220.
Article
PubMed
PubMed Central
Google Scholar
Foldvari G, Siroky P, Szekeres S, Majoros G, Sprong H. Dermacentor reticulatus: a vector on the rise. Parasit Vectors. 2016;1:314. https://doi.org/10.1186/s13071-016-1599-x.
Article
Google Scholar
Nosek J. The ecology and public health importance of Dermacentor marginatus and D. reticulatus ticks in Central Europe. Folia Parasitol (Praha). 1972;19:93–102.
CAS
PubMed
Google Scholar
Gray JS, Estrada-Pena A, Zintl A. Vectors of Babesiosis. Annu Rev Entomol. 2019;64:149–65. https://doi.org/10.1146/annurev-ento-011118-111932.
Article
CAS
PubMed
Google Scholar
Chitimia-Dobler L, Lemhofer G, Krol N, Bestehorn M, Dobler G, Pfeffer M. Repeated isolation of tick-borne encephalitis virus from adult Dermacentor reticulatus ticks in an endemic area in Germany. Parasit Vectors. 2019;1:90. https://doi.org/10.1186/s13071-019-3346-6.
Article
Google Scholar
Rubel F, Brugger K, Walter M, Vogelgesang JR, Didyk YM, Fu S, et al. Geographical distribution, climate adaptation and vector competence of the Eurasian hard tick Haemaphysalis concinna. Ticks Tick Borne Dis. 2018;9(5):1080–9. https://doi.org/10.1016/j.ttbdis.2018.04.002.
Article
PubMed
Google Scholar
Faulde MK, Rutenfranz M, Hepke J, Rogge M, Gorner A, Keth A. Human tick infestation pattern, tick-bite rate, and associated Borrelia burgdorferi s.l. infection risk during occupational tick exposure at the Seedorf military training area, northwestern Germany. Ticks Tick Borne Dis. 2014;5(5):594–9. https://doi.org/10.1016/j.ttbdis.2014.04.009.
Article
PubMed
Google Scholar
Nosek J. The ecology, bionomics and behaviour of Haemaphysalis (Haemaphysalis) concinna tick. Z Parasitenkd. 1971;36(3):233–41. https://doi.org/10.1007/BF00348561.
Article
CAS
PubMed
Google Scholar
Kiewra D, Czulowska A, Dyczko D, Zielinski R, Plewa-Tutaj K. First record of Haemaphysalis concinna (Acari: Ixodidae) in Lower Silesia. SW Poland Exp Appl Acarol. 2019;77(3):449–54. https://doi.org/10.1007/s10493-019-00344-w.
Article
PubMed
Google Scholar
Talleklint L, Jaenson TG. Increasing geographical distribution and density of Ixodes ricinus (Acari: Ixodidae) in central and northern Sweden. J Med Entomol. 1998;35(4):521–6. https://doi.org/10.1093/jmedent/35.4.521.
Article
CAS
PubMed
Google Scholar
Gray JS, Dautel H, Estrada-Pena A, Kahl O, Lindgren E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis. 2009;2009: 593232. https://doi.org/10.1155/2009/593232.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dantas-Torres F, Lia RP, Capelli G, Otranto D. Efficiency of flagging and dragging for tick collection. Exp Appl Acarol. 2013;61(1):119–27. https://doi.org/10.1007/s10493-013-9671-0.
Article
PubMed
Google Scholar
Estrada-Peña A. Ticks of domestic animals in the Mediterranean region: a guide to identification of species. University of Zaragoza; 2004.
Raileanu C, Tauchmann O, Vasic A, Wohnke E, Silaghi C. Borrelia miyamotoi and Borrelia burgdorferi (sensu lato) identification and survey of tick-borne encephalitis virus in ticks from north-eastern Germany. Parasite Vector. 2020;13(1). ARTN 106. https://doi.org/10.1186/s13071-020-3969-7.
Kumar S, Stecher G, Knyaz M, Li C, Koichiro T. Mol Biol Evol 2018;35
Thompson JD, Higgins DG, TG Gibson. Nucleic Acids Res 1994;22.
Chitimia-Dobler L, Riess R, Kahl O, Wolfel S, Dobler G, Nava S, et al. Ixodes inopinatus—occurring also outside the Mediterranean region. Ticks Tick Borne Dis. 2018;9(2):196–200. https://doi.org/10.1016/j.ttbdis.2017.09.004.
Article
PubMed
Google Scholar
Hauck D, Springer A, Pachnicke S, Schunack B, Fingerle V, Strube C. Ixodes inopinatus in northern Germany: occurrence and potential vector role for Borrelia spp., Rickettsia spp, and Anaplasma phagocytophilum in comparison with Ixodes ricinus. Parasitol Res. 2019;118(12):3205–16. https://doi.org/10.1007/s00436-019-06506-4.
Article
PubMed
Google Scholar
Estrada-Pena A, Nava S, Petney T. Description of all the stages of Ixodes inopinatus n. sp. (Acari: Ixodidae). Ticks Tick-Borne Dis. 2014;5:734–43. https://doi.org/10.1016/j.ttbdis.2014.05.003.
Article
PubMed
Google Scholar
Rubel F, Brugger K, Monazahian M, Habedank B, Dautel H, Leverenz S, et al. The first German map of georeferenced ixodid tick locations. Parasit Vectors. 2014;7:477. https://doi.org/10.1186/s13071-014-0477-7.
Article
PubMed
PubMed Central
Google Scholar
Stübs J. Untersuchungen über die Zeckenfauna einheimischer Wildsäuger. Ein Beitrag zur Kenntnis der Zeckenfauna Mecklenburgs. Wiss Z Univ Greifswald. 1960;9:177–88.
Szell Z, Sreter-Lancz Z, Marialigeti K, Sreter T. Temporal distribution of Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna in Hungary. Vet Parasitol. 2006;141(3–4):377–9. https://doi.org/10.1016/j.vetpar.2006.06.008.
Article
CAS
PubMed
Google Scholar
Frimmel S, Krienke A, Riebold D, Loebermann M, Littmann M, Fiedler K, et al. Tick-borne encephalitis virus habitats in north east Germany: reemergence of TBEV in ticks after 15 years of inactivity. Biomed Res Int. 2014;2014:308371. https://doi.org/10.1155/2014/308371.
Frimmel S, Leister M, Lobermann M, Feldhusen F, Seelmann M, Suss J, et al. Seroprevalence of tick-borne-encephalitis virus in wild game in Mecklenburg-Western Pomerania (north-eastern Germany). Ticks Tick-Borne Dis. 2016;7(6):1151–4. https://doi.org/10.1016/j.ttbdis.2016.08.004.
Article
PubMed
Google Scholar
Frimmel S, Lobermann M, Feldhusen F, Seelmann M, Stiasny K, Suss J, et al. Detection of tick-borne encephalitis virus antibodies in sera of sheep and goats in Mecklenburg-Western Pomerania (north-eastern Germany). Ticks Tick-Borne Dis. 2019;10(4):901–4. https://doi.org/10.1016/j.ttbdis.2019.04.012.
Article
PubMed
Google Scholar
Hersh MH, Tibbetts M, Strauss M, Ostfeld RS, Keesing F. Reservoir competence of wildlife host species for Babesia microti. Emerg Infect Dis. 2012;18(12):1951–7. https://doi.org/10.3201/eid1812.111392.
Article
PubMed
PubMed Central
Google Scholar
Franke J, Hildebrandt A, Meier F, Straube E, Dorn W. Prevalence of Lyme disease agents and several emerging pathogens in questing ticks from the German Baltic Coast. J Med Entomol. 2011;48(2):441–4. https://doi.org/10.1603/Me10182.
Article
PubMed
Google Scholar
Blazejak K, Janecek E, Strube C. A 10-year surveillance of Rickettsiales (Rickettsia spp. and Anaplasma phagocytophilum) in the city of Hanover, Germany, reveals Rickettsia spp. as emerging pathogens in ticks. Parasite Vector. 2017;10:ARTN 588. https://doi.org/10.1186/s13071-017-2537-2.
Scarpulla M, Barlozzari G, Salvato L, De Liberato C, Lorenzetti R, Macri G. Rickettsia helvetica in Human-Parasitizing and Free-Living Ixodes ricinus from Urban and Wild Green Areas in the Metropolitan City of Rome, Italy. Vector borne and zoonotic diseases (Larchmont, NY). 2018;18(8):404–7. https://doi.org/10.1089/vbz.2017.2235.
Article
Google Scholar
Fingerle V, Munderloh UG, Liegl G, Wilske B. Coexistence of ehrlichiae of the phagocytophila group with Borrelia burgdorferi in Ixodes ricinus from Southern Germany. Med Microbiol Immunol. 1999;188(3):145–9. https://doi.org/10.1007/s004300050117.
Article
CAS
PubMed
Google Scholar
Krause PJ, Fish D, Narasimhan S, Barbour AG. Borrelia miyamotoi infection in nature and in humans. Clin Microbiol Infect. 2015;21(7):631–9. https://doi.org/10.1016/j.cmi.2015.02.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter D, Schlee DB, Matuschka FR. Relapsing fever-like spirochetes infecting European vector tick of Lyme disease agent. Emerg Infect Dis. 2003;9(6):697–701.
Article
Google Scholar
Geller J, Nazarova L, Katargina O, Jarvekulg L, Fomenko N, Golovljova I. Detection and genetic characterization of relapsing fever spirochete Borrelia miyamotoi in Estonian ticks. PLoS ONE. 2012;7(12):e51914. https://doi.org/10.1371/journal.pone.0051914.
Article
CAS
PubMed
PubMed Central
Google Scholar
May K, Strube C. Prevalence of Rickettsiales (Anaplasma phagocytophilum and Rickettsia spp.) in hard ticks (Ixodes ricinus) in the city of Hamburg, Germany. Parasitol Res. 2014;113(6):2169–75. https://doi.org/10.1007/s00436-014-3869-x.
Article
PubMed
Google Scholar
Portillo A, Ibarra V, Santibanez S, Perez-Martinez L, Blanco JR, Oteo JA. Genetic characterisation of ompA, ompB, and gltA genes from Candidatus Rickettsia rioja. Clin Microbiol Infect. 2009;15(Suppl 2):307–8. https://doi.org/10.1111/j.1469-0691.2008.02250.x.
Article
PubMed
Google Scholar
Fuehrer HP, Biro N, Harl J, Worliczek HL, Beiglbock C, Farkas R, et al. Molecular detection of Theileria sp. ZS TO4 in red deer (Cervus elaphus) and questing Haemaphysalis concinna ticks in Eastern Austria. Vet Parasitol. 2013;197(3–4):653–7. https://doi.org/10.1016/j.vetpar.2013.07.005.
Article
CAS
PubMed
Google Scholar
Hornok S, Takacs N, Kontschan J, Gyorgy Z, Micsutka A, Iceton S, et al. Diversity of Haemaphysalis-associated piroplasms of ruminants in Central-Eastern Europe, Hungary. Parasit Vectors. 2015;8:627. https://doi.org/10.1186/s13071-015-1236-0.
Article
PubMed
PubMed Central
Google Scholar
Hamsikova Z, Kazimirova M, Harustiakova D, Mahrikova L, Slovak M, Berthova L, et al. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasit Vectors. 2016;9(1):292. https://doi.org/10.1186/s13071-016-1560-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10(3):512–26. https://doi.org/10.1093/oxfordjournals.molbev.a040023.
Article
CAS
Google Scholar
Chitimia L, Lin RQ, Cosoroaba I, Wu XY, Song HQ, Yuan ZG, et al. Genetic characterization of ticks from southwestern Romania by sequences of mitochondrial cox1 and nad5 genes. Exp Appl Acarol. 2010;52(3):305–11. https://doi.org/10.1007/s10493-010-9365-9.
Article
PubMed
Google Scholar
Casati S, Sager H, Gern L, Piffaretti JC. Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland. Ann Agr Env Med. 2006;13(1):65–70.
CAS
Google Scholar
Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of 2 Rickettsial Genes. J Bacteriol. 1991;173(5):1576–89. https://doi.org/10.1128/jb.173.5.1576-1589.1991.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roux V, Fournier PE, Raoult D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J Clin Microbiol. 1996;34(9):2058–65. https://doi.org/10.1128/jcm.34.9.2058-2065.1996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi YJ, Jang WJ, Kim JH, Ryu JS, Lee SH, Park KH, et al. Spotted fever group and typhus group rickettsioses in humans, South Korea. Emerg Infect Dis. 2005;11(2):237–44. https://doi.org/10.3201/eid1102.040603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiol-Sgm. 2004;150:1741–55. https://doi.org/10.1099/mic.0.26944-0.
Article
CAS
Google Scholar
Courtney JW, Kostelnik LM, Zeidner NS, Massung RF. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol. 2004;42(7):3164–8. https://doi.org/10.1128/jcm.42.7.3164-3168.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwaiger M, Cassinotti P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J Clin Virol. 2003;27(2):136–45. https://doi.org/10.1016/S1386-6532(02)00168-3.
Article
CAS
PubMed
Google Scholar